29 #ifndef _GLIBCXX_TR1_MATH_H
30 #define _GLIBCXX_TR1_MATH_H 1
34 #if _GLIBCXX_USE_C99_MATH_TR1
41 using std::tr1::atan2;
45 using std::tr1::copysign;
52 using std::tr1::expm1;
55 using std::tr1::floor;
60 using std::tr1::frexp;
61 using std::tr1::hypot;
62 using std::tr1::ilogb;
63 using std::tr1::ldexp;
64 using std::tr1::lgamma;
65 using std::tr1::llrint;
66 using std::tr1::llround;
69 using std::tr1::log1p;
72 using std::tr1::lrint;
73 using std::tr1::lround;
74 using std::tr1::nearbyint;
75 using std::tr1::nextafter;
76 using std::tr1::nexttoward;
78 using std::tr1::remainder;
79 using std::tr1::remquo;
81 using std::tr1::round;
82 using std::tr1::scalbln;
83 using std::tr1::scalbn;
89 using std::tr1::tgamma;
90 using std::tr1::trunc;
94 using std::tr1::assoc_laguerref;
96 using std::tr1::assoc_laguerrel;
98 using std::tr1::assoc_legendref;
100 using std::tr1::assoc_legendrel;
102 using std::tr1::betaf;
104 using std::tr1::betal;
106 using std::tr1::comp_ellint_1f;
108 using std::tr1::comp_ellint_1l;
110 using std::tr1::comp_ellint_2f;
112 using std::tr1::comp_ellint_2l;
114 using std::tr1::comp_ellint_3f;
116 using std::tr1::comp_ellint_3l;
118 using std::tr1::conf_hypergf;
120 using std::tr1::conf_hypergl;
122 using std::tr1::cyl_bessel_if;
124 using std::tr1::cyl_bessel_il;
126 using std::tr1::cyl_bessel_jf;
128 using std::tr1::cyl_bessel_jl;
130 using std::tr1::cyl_bessel_kf;
132 using std::tr1::cyl_bessel_kl;
134 using std::tr1::cyl_neumannf;
136 using std::tr1::cyl_neumannl;
138 using std::tr1::ellint_1f;
140 using std::tr1::ellint_1l;
142 using std::tr1::ellint_2f;
144 using std::tr1::ellint_2l;
146 using std::tr1::ellint_3f;
148 using std::tr1::ellint_3l;
150 using std::tr1::expintf;
152 using std::tr1::expintl;
154 using std::tr1::hermitef;
156 using std::tr1::hermitel;
158 using std::tr1::hypergf;
160 using std::tr1::hypergl;
162 using std::tr1::laguerref;
164 using std::tr1::laguerrel;
166 using std::tr1::legendref;
168 using std::tr1::legendrel;
170 using std::tr1::riemann_zetaf;
172 using std::tr1::riemann_zetal;
174 using std::tr1::sph_besself;
176 using std::tr1::sph_bessell;
178 using std::tr1::sph_legendref;
180 using std::tr1::sph_legendrel;
182 using std::tr1::sph_neumannf;
184 using std::tr1::sph_neumannl;
186 #endif // _GLIBCXX_TR1_MATH_H
complex< _Tp > log(const complex< _Tp > &)
Return complex natural logarithm of z.
__gnu_cxx::__promote< _Tp >::__type assoc_legendre(unsigned int __l, unsigned int __m, _Tp __x)
5.2.1.2 Associated Legendre functions.
__gnu_cxx::__promote_4< _Tpa, _Tpb, _Tpc, _Tp >::__type hyperg(_Tpa __a, _Tpb __b, _Tpc __c, _Tp __x)
5.2.1.17 Hypergeometric functions.
__gnu_cxx::__promote_2< _Tpx, _Tpy >::__type beta(_Tpx __x, _Tpy __y)
5.2.1.3 Beta functions.
__gnu_cxx::__promote< _Tp >::__type hermite(unsigned int __n, _Tp __x)
5.2.1.16 Hermite polynomials.
complex< _Tp > cos(const complex< _Tp > &)
Return complex cosine of z.
complex< _Tp > sqrt(const complex< _Tp > &)
Return complex square root of z.
__gnu_cxx::__promote_2< _Tpnu, _Tp >::__type cyl_bessel_k(_Tpnu __nu, _Tp __x)
5.2.1.10 Irregular modified cylindrical Bessel functions.
__gnu_cxx::__promote< _Tp >::__type legendre(unsigned int __n, _Tp __x)
5.2.1.19 Legendre polynomials.
__gnu_cxx::__promote_2< _Tp, _Tpp >::__type ellint_2(_Tp __k, _Tpp __phi)
5.2.1.13 Incomplete elliptic integrals of the second kind.
__gnu_cxx::__promote_2< _Tp, _Tpn >::__type comp_ellint_3(_Tp __k, _Tpn __nu)
5.2.1.6 Complete elliptic integrals of the third kind.
__gnu_cxx::__promote< _Tp >::__type sph_bessel(unsigned int __n, _Tp __x)
5.2.1.21 Spherical Bessel functions.
complex< _Tp > log10(const complex< _Tp > &)
Return complex base 10 logarithm of z.
complex< _Tp > tan(const complex< _Tp > &)
Return complex tangent of z.
__gnu_cxx::__promote< _Tp >::__type assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x)
5.2.1.1 Associated Laguerre polynomials.
__gnu_cxx::__promote< _Tp >::__type comp_ellint_2(_Tp __k)
5.2.1.5 Complete elliptic integrals of the second kind.
__gnu_cxx::__promote_2< _Tpnu, _Tp >::__type cyl_bessel_i(_Tpnu __nu, _Tp __x)
5.2.1.8 Regular modified cylindrical Bessel functions.
__gnu_cxx::__promote< _Tp >::__type riemann_zeta(_Tp __x)
5.2.1.20 Riemann zeta function.
complex< _Tp > sinh(const complex< _Tp > &)
Return complex hyperbolic sine of z.
__gnu_cxx::__promote_2< _Tpnu, _Tp >::__type cyl_bessel_j(_Tpnu __nu, _Tp __x)
5.2.1.9 Cylindrical Bessel functions (of the first kind).
complex< _Tp > cosh(const complex< _Tp > &)
Return complex hyperbolic cosine of z.
__gnu_cxx::__promote< _Tp >::__type sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta)
5.2.1.22 Spherical associated Legendre functions.
complex< _Tp > sin(const complex< _Tp > &)
Return complex sine of z.
std::complex< _Tp > asinh(const std::complex< _Tp > &)
asinh(__z) [8.1.6].
complex< _Tp > tanh(const complex< _Tp > &)
Return complex hyperbolic tangent of z.
std::complex< _Tp > atanh(const std::complex< _Tp > &)
atanh(__z) [8.1.7].
__gnu_cxx::__promote< _Tp >::__type expint(_Tp __x)
5.2.1.15 Exponential integrals.
__gnu_cxx::__promote_3< _Tp, _Tpn, _Tpp >::__type ellint_3(_Tp __k, _Tpn __nu, _Tpp __phi)
5.2.1.14 Incomplete elliptic integrals of the third kind.
__gnu_cxx::__promote_3< _Tpa, _Tpc, _Tp >::__type conf_hyperg(_Tpa __a, _Tpc __c, _Tp __x)
5.2.1.7 Confluent hypergeometric functions.
__gnu_cxx::__promote_2< _Tp, _Tpp >::__type ellint_1(_Tp __k, _Tpp __phi)
5.2.1.12 Incomplete elliptic integrals of the first kind.
__gnu_cxx::__promote_2< _Tpnu, _Tp >::__type cyl_neumann(_Tpnu __nu, _Tp __x)
5.2.1.11 Cylindrical Neumann functions.
__gnu_cxx::__promote< _Tp >::__type comp_ellint_1(_Tp __k)
5.2.1.4 Complete elliptic integrals of the first kind.
complex< _Tp > exp(const complex< _Tp > &)
Return complex base e exponential of z.
__gnu_cxx::__promote< _Tp >::__type sph_neumann(unsigned int __n, _Tp __x)
5.2.1.23 Spherical Neumann functions.
__gnu_cxx::__promote< _Tp >::__type laguerre(unsigned int __n, _Tp __x)
5.2.1.18 Laguerre polynomials.
std::complex< _Tp > acosh(const std::complex< _Tp > &)
acosh(__z) [8.1.5].