libstdc++
math.h
Go to the documentation of this file.
1 // TR1 math.h -*- C++ -*-
2 
3 // Copyright (C) 2006, 2007, 2009 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file tr1/math.h
26  * This is a TR1 C++ Library header.
27  */
28 
29 #ifndef _GLIBCXX_TR1_MATH_H
30 #define _GLIBCXX_TR1_MATH_H 1
31 
32 #include <tr1/cmath>
33 
34 #if _GLIBCXX_USE_C99_MATH_TR1
35 
36 using std::tr1::acos;
37 using std::tr1::acosh;
38 using std::tr1::asin;
39 using std::tr1::asinh;
40 using std::tr1::atan;
41 using std::tr1::atan2;
42 using std::tr1::atanh;
43 using std::tr1::cbrt;
44 using std::tr1::ceil;
45 using std::tr1::copysign;
46 using std::tr1::cos;
47 using std::tr1::cosh;
48 using std::tr1::erf;
49 using std::tr1::erfc;
50 using std::tr1::exp;
51 using std::tr1::exp2;
52 using std::tr1::expm1;
53 using std::tr1::fabs;
54 using std::tr1::fdim;
55 using std::tr1::floor;
56 using std::tr1::fma;
57 using std::tr1::fmax;
58 using std::tr1::fmin;
59 using std::tr1::fmod;
60 using std::tr1::frexp;
61 using std::tr1::hypot;
62 using std::tr1::ilogb;
63 using std::tr1::ldexp;
64 using std::tr1::lgamma;
65 using std::tr1::llrint;
66 using std::tr1::llround;
67 using std::tr1::log;
68 using std::tr1::log10;
69 using std::tr1::log1p;
70 using std::tr1::log2;
71 using std::tr1::logb;
72 using std::tr1::lrint;
73 using std::tr1::lround;
74 using std::tr1::nearbyint;
75 using std::tr1::nextafter;
76 using std::tr1::nexttoward;
77 using std::tr1::pow;
78 using std::tr1::remainder;
79 using std::tr1::remquo;
80 using std::tr1::rint;
81 using std::tr1::round;
82 using std::tr1::scalbln;
83 using std::tr1::scalbn;
84 using std::tr1::sin;
85 using std::tr1::sinh;
86 using std::tr1::sqrt;
87 using std::tr1::tan;
88 using std::tr1::tanh;
89 using std::tr1::tgamma;
90 using std::tr1::trunc;
91 
92 #endif
93 
94 using std::tr1::assoc_laguerref;
96 using std::tr1::assoc_laguerrel;
97 
98 using std::tr1::assoc_legendref;
100 using std::tr1::assoc_legendrel;
101 
102 using std::tr1::betaf;
103 using std::tr1::beta;
104 using std::tr1::betal;
105 
106 using std::tr1::comp_ellint_1f;
108 using std::tr1::comp_ellint_1l;
109 
110 using std::tr1::comp_ellint_2f;
112 using std::tr1::comp_ellint_2l;
113 
114 using std::tr1::comp_ellint_3f;
116 using std::tr1::comp_ellint_3l;
117 
118 using std::tr1::conf_hypergf;
120 using std::tr1::conf_hypergl;
121 
122 using std::tr1::cyl_bessel_if;
124 using std::tr1::cyl_bessel_il;
125 
126 using std::tr1::cyl_bessel_jf;
128 using std::tr1::cyl_bessel_jl;
129 
130 using std::tr1::cyl_bessel_kf;
132 using std::tr1::cyl_bessel_kl;
133 
134 using std::tr1::cyl_neumannf;
136 using std::tr1::cyl_neumannl;
137 
138 using std::tr1::ellint_1f;
139 using std::tr1::ellint_1;
140 using std::tr1::ellint_1l;
141 
142 using std::tr1::ellint_2f;
143 using std::tr1::ellint_2;
144 using std::tr1::ellint_2l;
145 
146 using std::tr1::ellint_3f;
147 using std::tr1::ellint_3;
148 using std::tr1::ellint_3l;
149 
150 using std::tr1::expintf;
151 using std::tr1::expint;
152 using std::tr1::expintl;
153 
154 using std::tr1::hermitef;
155 using std::tr1::hermite;
156 using std::tr1::hermitel;
157 
158 using std::tr1::hypergf;
159 using std::tr1::hyperg;
160 using std::tr1::hypergl;
161 
162 using std::tr1::laguerref;
163 using std::tr1::laguerre;
164 using std::tr1::laguerrel;
165 
166 using std::tr1::legendref;
167 using std::tr1::legendre;
168 using std::tr1::legendrel;
169 
170 using std::tr1::riemann_zetaf;
172 using std::tr1::riemann_zetal;
173 
174 using std::tr1::sph_besself;
176 using std::tr1::sph_bessell;
177 
178 using std::tr1::sph_legendref;
180 using std::tr1::sph_legendrel;
181 
182 using std::tr1::sph_neumannf;
184 using std::tr1::sph_neumannl;
185 
186 #endif // _GLIBCXX_TR1_MATH_H
complex< _Tp > log(const complex< _Tp > &)
Return complex natural logarithm of z.
Definition: complex:782
__gnu_cxx::__promote< _Tp >::__type assoc_legendre(unsigned int __l, unsigned int __m, _Tp __x)
5.2.1.2 Associated Legendre functions.
Definition: tr1/cmath:140
__gnu_cxx::__promote_4< _Tpa, _Tpb, _Tpc, _Tp >::__type hyperg(_Tpa __a, _Tpb __b, _Tpc __c, _Tp __x)
5.2.1.17 Hypergeometric functions.
Definition: tr1/cmath:395
__gnu_cxx::__promote_2< _Tpx, _Tpy >::__type beta(_Tpx __x, _Tpy __y)
5.2.1.3 Beta functions.
Definition: tr1/cmath:157
__gnu_cxx::__promote< _Tp >::__type hermite(unsigned int __n, _Tp __x)
5.2.1.16 Hermite polynomials.
Definition: tr1/cmath:378
complex< _Tp > cos(const complex< _Tp > &)
Return complex cosine of z.
Definition: complex:699
complex< _Tp > sqrt(const complex< _Tp > &)
Return complex square root of z.
Definition: complex:891
__gnu_cxx::__promote_2< _Tpnu, _Tp >::__type cyl_bessel_k(_Tpnu __nu, _Tp __x)
5.2.1.10 Irregular modified cylindrical Bessel functions.
Definition: tr1/cmath:276
__gnu_cxx::__promote< _Tp >::__type legendre(unsigned int __n, _Tp __x)
5.2.1.19 Legendre polynomials.
Definition: tr1/cmath:429
__gnu_cxx::__promote_2< _Tp, _Tpp >::__type ellint_2(_Tp __k, _Tpp __phi)
5.2.1.13 Incomplete elliptic integrals of the second kind.
Definition: tr1/cmath:327
__gnu_cxx::__promote_2< _Tp, _Tpn >::__type comp_ellint_3(_Tp __k, _Tpn __nu)
5.2.1.6 Complete elliptic integrals of the third kind.
Definition: tr1/cmath:208
__gnu_cxx::__promote< _Tp >::__type sph_bessel(unsigned int __n, _Tp __x)
5.2.1.21 Spherical Bessel functions.
Definition: tr1/cmath:463
complex< _Tp > log10(const complex< _Tp > &)
Return complex base 10 logarithm of z.
Definition: complex:787
complex< _Tp > tan(const complex< _Tp > &)
Return complex tangent of z.
Definition: complex:918
__gnu_cxx::__promote< _Tp >::__type assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x)
5.2.1.1 Associated Laguerre polynomials.
Definition: tr1/cmath:123
__gnu_cxx::__promote< _Tp >::__type comp_ellint_2(_Tp __k)
5.2.1.5 Complete elliptic integrals of the second kind.
Definition: tr1/cmath:191
__gnu_cxx::__promote_2< _Tpnu, _Tp >::__type cyl_bessel_i(_Tpnu __nu, _Tp __x)
5.2.1.8 Regular modified cylindrical Bessel functions.
Definition: tr1/cmath:242
__gnu_cxx::__promote< _Tp >::__type riemann_zeta(_Tp __x)
5.2.1.20 Riemann zeta function.
Definition: tr1/cmath:446
complex< _Tp > sinh(const complex< _Tp > &)
Return complex hyperbolic sine of z.
Definition: complex:847
__gnu_cxx::__promote_2< _Tpnu, _Tp >::__type cyl_bessel_j(_Tpnu __nu, _Tp __x)
5.2.1.9 Cylindrical Bessel functions (of the first kind).
Definition: tr1/cmath:259
complex< _Tp > cosh(const complex< _Tp > &)
Return complex hyperbolic cosine of z.
Definition: complex:729
__gnu_cxx::__promote< _Tp >::__type sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta)
5.2.1.22 Spherical associated Legendre functions.
Definition: tr1/cmath:480
complex< _Tp > sin(const complex< _Tp > &)
Return complex sine of z.
Definition: complex:817
std::complex< _Tp > asinh(const std::complex< _Tp > &)
asinh(__z) [8.1.6].
complex< _Tp > tanh(const complex< _Tp > &)
Return complex hyperbolic tangent of z.
Definition: complex:946
std::complex< _Tp > atanh(const std::complex< _Tp > &)
atanh(__z) [8.1.7].
__gnu_cxx::__promote< _Tp >::__type expint(_Tp __x)
5.2.1.15 Exponential integrals.
Definition: tr1/cmath:361
__gnu_cxx::__promote_3< _Tp, _Tpn, _Tpp >::__type ellint_3(_Tp __k, _Tpn __nu, _Tpp __phi)
5.2.1.14 Incomplete elliptic integrals of the third kind.
Definition: tr1/cmath:344
__gnu_cxx::__promote_3< _Tpa, _Tpc, _Tp >::__type conf_hyperg(_Tpa __a, _Tpc __c, _Tp __x)
5.2.1.7 Confluent hypergeometric functions.
Definition: tr1/cmath:225
__gnu_cxx::__promote_2< _Tp, _Tpp >::__type ellint_1(_Tp __k, _Tpp __phi)
5.2.1.12 Incomplete elliptic integrals of the first kind.
Definition: tr1/cmath:310
__gnu_cxx::__promote_2< _Tpnu, _Tp >::__type cyl_neumann(_Tpnu __nu, _Tp __x)
5.2.1.11 Cylindrical Neumann functions.
Definition: tr1/cmath:293
__gnu_cxx::__promote< _Tp >::__type comp_ellint_1(_Tp __k)
5.2.1.4 Complete elliptic integrals of the first kind.
Definition: tr1/cmath:174
complex< _Tp > exp(const complex< _Tp > &)
Return complex base e exponential of z.
Definition: complex:755
__gnu_cxx::__promote< _Tp >::__type sph_neumann(unsigned int __n, _Tp __x)
5.2.1.23 Spherical Neumann functions.
Definition: tr1/cmath:497
__gnu_cxx::__promote< _Tp >::__type laguerre(unsigned int __n, _Tp __x)
5.2.1.18 Laguerre polynomials.
Definition: tr1/cmath:412
std::complex< _Tp > acosh(const std::complex< _Tp > &)
acosh(__z) [8.1.5].