Libav
h264_direct.c
Go to the documentation of this file.
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... direct mb/block decoding
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of Libav.
6  *
7  * Libav is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * Libav is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with Libav; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
28 #include "internal.h"
29 #include "avcodec.h"
30 #include "mpegvideo.h"
31 #include "h264.h"
32 #include "rectangle.h"
33 #include "thread.h"
34 
35 #include <assert.h>
36 
37 
38 static int get_scale_factor(H264Context * const h, int poc, int poc1, int i){
39  int poc0 = h->ref_list[0][i].poc;
40  int td = av_clip(poc1 - poc0, -128, 127);
41  if(td == 0 || h->ref_list[0][i].long_ref){
42  return 256;
43  }else{
44  int tb = av_clip(poc - poc0, -128, 127);
45  int tx = (16384 + (FFABS(td) >> 1)) / td;
46  return av_clip((tb*tx + 32) >> 6, -1024, 1023);
47  }
48 }
49 
51  const int poc = h->cur_pic_ptr->field_poc[h->picture_structure == PICT_BOTTOM_FIELD];
52  const int poc1 = h->ref_list[1][0].poc;
53  int i, field;
54 
55  if (FRAME_MBAFF(h))
56  for (field = 0; field < 2; field++){
57  const int poc = h->cur_pic_ptr->field_poc[field];
58  const int poc1 = h->ref_list[1][0].field_poc[field];
59  for (i = 0; i < 2 * h->ref_count[0]; i++)
60  h->dist_scale_factor_field[field][i^field] =
61  get_scale_factor(h, poc, poc1, i+16);
62  }
63 
64  for (i = 0; i < h->ref_count[0]; i++){
65  h->dist_scale_factor[i] = get_scale_factor(h, poc, poc1, i);
66  }
67 }
68 
69 static void fill_colmap(H264Context *h, int map[2][16+32], int list, int field, int colfield, int mbafi){
70  Picture * const ref1 = &h->ref_list[1][0];
71  int j, old_ref, rfield;
72  int start= mbafi ? 16 : 0;
73  int end = mbafi ? 16+2*h->ref_count[0] : h->ref_count[0];
74  int interl= mbafi || h->picture_structure != PICT_FRAME;
75 
76  /* bogus; fills in for missing frames */
77  memset(map[list], 0, sizeof(map[list]));
78 
79  for(rfield=0; rfield<2; rfield++){
80  for(old_ref=0; old_ref<ref1->ref_count[colfield][list]; old_ref++){
81  int poc = ref1->ref_poc[colfield][list][old_ref];
82 
83  if (!interl)
84  poc |= 3;
85  else if( interl && (poc&3) == 3) // FIXME: store all MBAFF references so this is not needed
86  poc= (poc&~3) + rfield + 1;
87 
88  for(j=start; j<end; j++){
89  if (4 * h->ref_list[0][j].frame_num + (h->ref_list[0][j].reference & 3) == poc) {
90  int cur_ref= mbafi ? (j-16)^field : j;
91  if (ref1->mbaff)
92  map[list][2 * old_ref + (rfield^field) + 16] = cur_ref;
93  if(rfield == field || !interl)
94  map[list][old_ref] = cur_ref;
95  break;
96  }
97  }
98  }
99  }
100 }
101 
103  Picture * const ref1 = &h->ref_list[1][0];
104  Picture * const cur = h->cur_pic_ptr;
105  int list, j, field;
106  int sidx= (h->picture_structure&1)^1;
107  int ref1sidx = (ref1->reference&1)^1;
108 
109  for(list=0; list<2; list++){
110  cur->ref_count[sidx][list] = h->ref_count[list];
111  for(j=0; j<h->ref_count[list]; j++)
112  cur->ref_poc[sidx][list][j] = 4 * h->ref_list[list][j].frame_num + (h->ref_list[list][j].reference & 3);
113  }
114 
115  if(h->picture_structure == PICT_FRAME){
116  memcpy(cur->ref_count[1], cur->ref_count[0], sizeof(cur->ref_count[0]));
117  memcpy(cur->ref_poc [1], cur->ref_poc [0], sizeof(cur->ref_poc [0]));
118  }
119 
120  cur->mbaff = FRAME_MBAFF(h);
121 
122  h->col_fieldoff= 0;
123  if(h->picture_structure == PICT_FRAME){
124  int cur_poc = h->cur_pic_ptr->poc;
125  int *col_poc = h->ref_list[1]->field_poc;
126  h->col_parity= (FFABS(col_poc[0] - cur_poc) >= FFABS(col_poc[1] - cur_poc));
127  ref1sidx=sidx= h->col_parity;
128  } else if (!(h->picture_structure & h->ref_list[1][0].reference) && !h->ref_list[1][0].mbaff) { // FL -> FL & differ parity
129  h->col_fieldoff = 2 * h->ref_list[1][0].reference - 3;
130  }
131 
133  return;
134 
135  for(list=0; list<2; list++){
136  fill_colmap(h, h->map_col_to_list0, list, sidx, ref1sidx, 0);
137  if (FRAME_MBAFF(h))
138  for(field=0; field<2; field++)
139  fill_colmap(h, h->map_col_to_list0_field[field], list, field, field, 1);
140  }
141 }
142 
143 static void await_reference_mb_row(H264Context * const h, Picture *ref, int mb_y)
144 {
145  int ref_field = ref->reference - 1;
146  int ref_field_picture = ref->field_picture;
147  int ref_height = 16*h->mb_height >> ref_field_picture;
148 
150  return;
151 
152  //FIXME it can be safe to access mb stuff
153  //even if pixels aren't deblocked yet
154 
156  FFMIN(16 * mb_y >> ref_field_picture, ref_height - 1),
157  ref_field_picture && ref_field);
158 }
159 
160 static void pred_spatial_direct_motion(H264Context * const h, int *mb_type){
161  int b8_stride = 2;
162  int b4_stride = h->b_stride;
163  int mb_xy = h->mb_xy, mb_y = h->mb_y;
164  int mb_type_col[2];
165  const int16_t (*l1mv0)[2], (*l1mv1)[2];
166  const int8_t *l1ref0, *l1ref1;
167  const int is_b8x8 = IS_8X8(*mb_type);
168  unsigned int sub_mb_type= MB_TYPE_L0L1;
169  int i8, i4;
170  int ref[2];
171  int mv[2];
172  int list;
173 
174  assert(h->ref_list[1][0].reference & 3);
175 
176  await_reference_mb_row(h, &h->ref_list[1][0], h->mb_y + !!IS_INTERLACED(*mb_type));
177 
178 #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
179 
180 
181  /* ref = min(neighbors) */
182  for(list=0; list<2; list++){
183  int left_ref = h->ref_cache[list][scan8[0] - 1];
184  int top_ref = h->ref_cache[list][scan8[0] - 8];
185  int refc = h->ref_cache[list][scan8[0] - 8 + 4];
186  const int16_t *C= h->mv_cache[list][ scan8[0] - 8 + 4];
187  if(refc == PART_NOT_AVAILABLE){
188  refc = h->ref_cache[list][scan8[0] - 8 - 1];
189  C = h-> mv_cache[list][scan8[0] - 8 - 1];
190  }
191  ref[list] = FFMIN3((unsigned)left_ref, (unsigned)top_ref, (unsigned)refc);
192  if(ref[list] >= 0){
193  //this is just pred_motion() but with the cases removed that cannot happen for direct blocks
194  const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
195  const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
196 
197  int match_count= (left_ref==ref[list]) + (top_ref==ref[list]) + (refc==ref[list]);
198  if(match_count > 1){ //most common
199  mv[list]= pack16to32(mid_pred(A[0], B[0], C[0]),
200  mid_pred(A[1], B[1], C[1]) );
201  }else {
202  assert(match_count==1);
203  if(left_ref==ref[list]){
204  mv[list]= AV_RN32A(A);
205  }else if(top_ref==ref[list]){
206  mv[list]= AV_RN32A(B);
207  }else{
208  mv[list]= AV_RN32A(C);
209  }
210  }
211  }else{
212  int mask= ~(MB_TYPE_L0 << (2*list));
213  mv[list] = 0;
214  ref[list] = -1;
215  if(!is_b8x8)
216  *mb_type &= mask;
217  sub_mb_type &= mask;
218  }
219  }
220  if(ref[0] < 0 && ref[1] < 0){
221  ref[0] = ref[1] = 0;
222  if(!is_b8x8)
223  *mb_type |= MB_TYPE_L0L1;
224  sub_mb_type |= MB_TYPE_L0L1;
225  }
226 
227  if(!(is_b8x8|mv[0]|mv[1])){
228  fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
229  fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
230  fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
231  fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
233  return;
234  }
235 
236  if (IS_INTERLACED(h->ref_list[1][0].mb_type[mb_xy])) { // AFL/AFR/FR/FL -> AFL/FL
237  if (!IS_INTERLACED(*mb_type)) { // AFR/FR -> AFL/FL
238  mb_y = (h->mb_y&~1) + h->col_parity;
239  mb_xy= h->mb_x + ((h->mb_y&~1) + h->col_parity)*h->mb_stride;
240  b8_stride = 0;
241  }else{
242  mb_y += h->col_fieldoff;
243  mb_xy += h->mb_stride*h->col_fieldoff; // non zero for FL -> FL & differ parity
244  }
245  goto single_col;
246  }else{ // AFL/AFR/FR/FL -> AFR/FR
247  if(IS_INTERLACED(*mb_type)){ // AFL /FL -> AFR/FR
248  mb_y = h->mb_y&~1;
249  mb_xy= h->mb_x + (h->mb_y&~1)*h->mb_stride;
250  mb_type_col[0] = h->ref_list[1][0].mb_type[mb_xy];
251  mb_type_col[1] = h->ref_list[1][0].mb_type[mb_xy + h->mb_stride];
252  b8_stride = 2+4*h->mb_stride;
253  b4_stride *= 6;
254  if (IS_INTERLACED(mb_type_col[0]) != IS_INTERLACED(mb_type_col[1])) {
255  mb_type_col[0] &= ~MB_TYPE_INTERLACED;
256  mb_type_col[1] &= ~MB_TYPE_INTERLACED;
257  }
258 
259  sub_mb_type |= MB_TYPE_16x16|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
260  if( (mb_type_col[0] & MB_TYPE_16x16_OR_INTRA)
261  && (mb_type_col[1] & MB_TYPE_16x16_OR_INTRA)
262  && !is_b8x8){
263  *mb_type |= MB_TYPE_16x8 |MB_TYPE_DIRECT2; /* B_16x8 */
264  }else{
265  *mb_type |= MB_TYPE_8x8;
266  }
267  }else{ // AFR/FR -> AFR/FR
268 single_col:
269  mb_type_col[0] =
270  mb_type_col[1] = h->ref_list[1][0].mb_type[mb_xy];
271 
272  sub_mb_type |= MB_TYPE_16x16|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
273  if(!is_b8x8 && (mb_type_col[0] & MB_TYPE_16x16_OR_INTRA)){
274  *mb_type |= MB_TYPE_16x16|MB_TYPE_DIRECT2; /* B_16x16 */
275  }else if(!is_b8x8 && (mb_type_col[0] & (MB_TYPE_16x8|MB_TYPE_8x16))){
276  *mb_type |= MB_TYPE_DIRECT2 | (mb_type_col[0] & (MB_TYPE_16x8|MB_TYPE_8x16));
277  }else{
279  /* FIXME save sub mb types from previous frames (or derive from MVs)
280  * so we know exactly what block size to use */
281  sub_mb_type += (MB_TYPE_8x8-MB_TYPE_16x16); /* B_SUB_4x4 */
282  }
283  *mb_type |= MB_TYPE_8x8;
284  }
285  }
286  }
287 
288  await_reference_mb_row(h, &h->ref_list[1][0], mb_y);
289 
290  l1mv0 = &h->ref_list[1][0].motion_val[0][h->mb2b_xy [mb_xy]];
291  l1mv1 = &h->ref_list[1][0].motion_val[1][h->mb2b_xy [mb_xy]];
292  l1ref0 = &h->ref_list[1][0].ref_index [0][4 * mb_xy];
293  l1ref1 = &h->ref_list[1][0].ref_index [1][4 * mb_xy];
294  if(!b8_stride){
295  if(h->mb_y&1){
296  l1ref0 += 2;
297  l1ref1 += 2;
298  l1mv0 += 2*b4_stride;
299  l1mv1 += 2*b4_stride;
300  }
301  }
302 
303 
304  if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col[0])){
305  int n=0;
306  for(i8=0; i8<4; i8++){
307  int x8 = i8&1;
308  int y8 = i8>>1;
309  int xy8 = x8+y8*b8_stride;
310  int xy4 = 3*x8+y8*b4_stride;
311  int a,b;
312 
313  if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
314  continue;
315  h->sub_mb_type[i8] = sub_mb_type;
316 
317  fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
318  fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
319  if(!IS_INTRA(mb_type_col[y8]) && !h->ref_list[1][0].long_ref
320  && ( (l1ref0[xy8] == 0 && FFABS(l1mv0[xy4][0]) <= 1 && FFABS(l1mv0[xy4][1]) <= 1)
321  || (l1ref0[xy8] < 0 && l1ref1[xy8] == 0 && FFABS(l1mv1[xy4][0]) <= 1 && FFABS(l1mv1[xy4][1]) <= 1))){
322  a=b=0;
323  if(ref[0] > 0)
324  a= mv[0];
325  if(ref[1] > 0)
326  b= mv[1];
327  n++;
328  }else{
329  a= mv[0];
330  b= mv[1];
331  }
332  fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, a, 4);
333  fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, b, 4);
334  }
335  if(!is_b8x8 && !(n&3))
337  }else if(IS_16X16(*mb_type)){
338  int a,b;
339 
340  fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
341  fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
342  if(!IS_INTRA(mb_type_col[0]) && !h->ref_list[1][0].long_ref
343  && ( (l1ref0[0] == 0 && FFABS(l1mv0[0][0]) <= 1 && FFABS(l1mv0[0][1]) <= 1)
344  || (l1ref0[0] < 0 && l1ref1[0] == 0 && FFABS(l1mv1[0][0]) <= 1 && FFABS(l1mv1[0][1]) <= 1
345  && h->x264_build>33U))){
346  a=b=0;
347  if(ref[0] > 0)
348  a= mv[0];
349  if(ref[1] > 0)
350  b= mv[1];
351  }else{
352  a= mv[0];
353  b= mv[1];
354  }
355  fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, a, 4);
356  fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, b, 4);
357  }else{
358  int n=0;
359  for(i8=0; i8<4; i8++){
360  const int x8 = i8&1;
361  const int y8 = i8>>1;
362 
363  if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
364  continue;
365  h->sub_mb_type[i8] = sub_mb_type;
366 
367  fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, mv[0], 4);
368  fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, mv[1], 4);
369  fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
370  fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
371 
372  assert(b8_stride==2);
373  /* col_zero_flag */
374  if(!IS_INTRA(mb_type_col[0]) && !h->ref_list[1][0].long_ref && ( l1ref0[i8] == 0
375  || (l1ref0[i8] < 0 && l1ref1[i8] == 0
376  && h->x264_build>33U))){
377  const int16_t (*l1mv)[2]= l1ref0[i8] == 0 ? l1mv0 : l1mv1;
378  if(IS_SUB_8X8(sub_mb_type)){
379  const int16_t *mv_col = l1mv[x8*3 + y8*3*b4_stride];
380  if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
381  if(ref[0] == 0)
382  fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
383  if(ref[1] == 0)
384  fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
385  n+=4;
386  }
387  }else{
388  int m=0;
389  for(i4=0; i4<4; i4++){
390  const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*b4_stride];
391  if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
392  if(ref[0] == 0)
393  AV_ZERO32(h->mv_cache[0][scan8[i8*4+i4]]);
394  if(ref[1] == 0)
395  AV_ZERO32(h->mv_cache[1][scan8[i8*4+i4]]);
396  m++;
397  }
398  }
399  if(!(m&3))
401  n+=m;
402  }
403  }
404  }
405  if(!is_b8x8 && !(n&15))
407  }
408 }
409 
410 static void pred_temp_direct_motion(H264Context * const h, int *mb_type){
411  int b8_stride = 2;
412  int b4_stride = h->b_stride;
413  int mb_xy = h->mb_xy, mb_y = h->mb_y;
414  int mb_type_col[2];
415  const int16_t (*l1mv0)[2], (*l1mv1)[2];
416  const int8_t *l1ref0, *l1ref1;
417  const int is_b8x8 = IS_8X8(*mb_type);
418  unsigned int sub_mb_type;
419  int i8, i4;
420 
421  assert(h->ref_list[1][0].reference & 3);
422 
423  await_reference_mb_row(h, &h->ref_list[1][0], h->mb_y + !!IS_INTERLACED(*mb_type));
424 
425  if (IS_INTERLACED(h->ref_list[1][0].mb_type[mb_xy])) { // AFL/AFR/FR/FL -> AFL/FL
426  if (!IS_INTERLACED(*mb_type)) { // AFR/FR -> AFL/FL
427  mb_y = (h->mb_y&~1) + h->col_parity;
428  mb_xy= h->mb_x + ((h->mb_y&~1) + h->col_parity)*h->mb_stride;
429  b8_stride = 0;
430  }else{
431  mb_y += h->col_fieldoff;
432  mb_xy += h->mb_stride*h->col_fieldoff; // non zero for FL -> FL & differ parity
433  }
434  goto single_col;
435  }else{ // AFL/AFR/FR/FL -> AFR/FR
436  if(IS_INTERLACED(*mb_type)){ // AFL /FL -> AFR/FR
437  mb_y = h->mb_y&~1;
438  mb_xy= h->mb_x + (h->mb_y&~1)*h->mb_stride;
439  mb_type_col[0] = h->ref_list[1][0].mb_type[mb_xy];
440  mb_type_col[1] = h->ref_list[1][0].mb_type[mb_xy + h->mb_stride];
441  b8_stride = 2+4*h->mb_stride;
442  b4_stride *= 6;
443  if (IS_INTERLACED(mb_type_col[0]) != IS_INTERLACED(mb_type_col[1])) {
444  mb_type_col[0] &= ~MB_TYPE_INTERLACED;
445  mb_type_col[1] &= ~MB_TYPE_INTERLACED;
446  }
447 
448  sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
449 
450  if( (mb_type_col[0] & MB_TYPE_16x16_OR_INTRA)
451  && (mb_type_col[1] & MB_TYPE_16x16_OR_INTRA)
452  && !is_b8x8){
453  *mb_type |= MB_TYPE_16x8 |MB_TYPE_L0L1|MB_TYPE_DIRECT2; /* B_16x8 */
454  }else{
455  *mb_type |= MB_TYPE_8x8|MB_TYPE_L0L1;
456  }
457  }else{ // AFR/FR -> AFR/FR
458 single_col:
459  mb_type_col[0] =
460  mb_type_col[1] = h->ref_list[1][0].mb_type[mb_xy];
461 
462  sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
463  if(!is_b8x8 && (mb_type_col[0] & MB_TYPE_16x16_OR_INTRA)){
464  *mb_type |= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
465  }else if(!is_b8x8 && (mb_type_col[0] & (MB_TYPE_16x8|MB_TYPE_8x16))){
466  *mb_type |= MB_TYPE_L0L1|MB_TYPE_DIRECT2 | (mb_type_col[0] & (MB_TYPE_16x8|MB_TYPE_8x16));
467  }else{
469  /* FIXME save sub mb types from previous frames (or derive from MVs)
470  * so we know exactly what block size to use */
471  sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
472  }
473  *mb_type |= MB_TYPE_8x8|MB_TYPE_L0L1;
474  }
475  }
476  }
477 
478  await_reference_mb_row(h, &h->ref_list[1][0], mb_y);
479 
480  l1mv0 = &h->ref_list[1][0].motion_val[0][h->mb2b_xy [mb_xy]];
481  l1mv1 = &h->ref_list[1][0].motion_val[1][h->mb2b_xy [mb_xy]];
482  l1ref0 = &h->ref_list[1][0].ref_index [0][4 * mb_xy];
483  l1ref1 = &h->ref_list[1][0].ref_index [1][4 * mb_xy];
484  if(!b8_stride){
485  if(h->mb_y&1){
486  l1ref0 += 2;
487  l1ref1 += 2;
488  l1mv0 += 2*b4_stride;
489  l1mv1 += 2*b4_stride;
490  }
491  }
492 
493  {
494  const int *map_col_to_list0[2] = {h->map_col_to_list0[0], h->map_col_to_list0[1]};
495  const int *dist_scale_factor = h->dist_scale_factor;
496  int ref_offset;
497 
498  if (FRAME_MBAFF(h) && IS_INTERLACED(*mb_type)) {
499  map_col_to_list0[0] = h->map_col_to_list0_field[h->mb_y&1][0];
500  map_col_to_list0[1] = h->map_col_to_list0_field[h->mb_y&1][1];
501  dist_scale_factor =h->dist_scale_factor_field[h->mb_y&1];
502  }
503  ref_offset = (h->ref_list[1][0].mbaff<<4) & (mb_type_col[0]>>3); //if(h->ref_list[1][0].mbaff && IS_INTERLACED(mb_type_col[0])) ref_offset=16 else 0
504 
505  if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col[0])){
506  int y_shift = 2*!IS_INTERLACED(*mb_type);
507  assert(h->sps.direct_8x8_inference_flag);
508 
509  for(i8=0; i8<4; i8++){
510  const int x8 = i8&1;
511  const int y8 = i8>>1;
512  int ref0, scale;
513  const int16_t (*l1mv)[2]= l1mv0;
514 
515  if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
516  continue;
517  h->sub_mb_type[i8] = sub_mb_type;
518 
519  fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
520  if(IS_INTRA(mb_type_col[y8])){
521  fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
522  fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
523  fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
524  continue;
525  }
526 
527  ref0 = l1ref0[x8 + y8*b8_stride];
528  if(ref0 >= 0)
529  ref0 = map_col_to_list0[0][ref0 + ref_offset];
530  else{
531  ref0 = map_col_to_list0[1][l1ref1[x8 + y8*b8_stride] + ref_offset];
532  l1mv= l1mv1;
533  }
534  scale = dist_scale_factor[ref0];
535  fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
536 
537  {
538  const int16_t *mv_col = l1mv[x8*3 + y8*b4_stride];
539  int my_col = (mv_col[1]<<y_shift)/2;
540  int mx = (scale * mv_col[0] + 128) >> 8;
541  int my = (scale * my_col + 128) >> 8;
542  fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
543  fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-my_col), 4);
544  }
545  }
546  return;
547  }
548 
549  /* one-to-one mv scaling */
550 
551  if(IS_16X16(*mb_type)){
552  int ref, mv0, mv1;
553 
554  fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
555  if(IS_INTRA(mb_type_col[0])){
556  ref=mv0=mv1=0;
557  }else{
558  const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0] + ref_offset]
559  : map_col_to_list0[1][l1ref1[0] + ref_offset];
560  const int scale = dist_scale_factor[ref0];
561  const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
562  int mv_l0[2];
563  mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
564  mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
565  ref= ref0;
566  mv0= pack16to32(mv_l0[0],mv_l0[1]);
567  mv1= pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
568  }
569  fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
570  fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, mv0, 4);
571  fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, mv1, 4);
572  }else{
573  for(i8=0; i8<4; i8++){
574  const int x8 = i8&1;
575  const int y8 = i8>>1;
576  int ref0, scale;
577  const int16_t (*l1mv)[2]= l1mv0;
578 
579  if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
580  continue;
581  h->sub_mb_type[i8] = sub_mb_type;
582  fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
583  if(IS_INTRA(mb_type_col[0])){
584  fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
585  fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
586  fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
587  continue;
588  }
589 
590  assert(b8_stride == 2);
591  ref0 = l1ref0[i8];
592  if(ref0 >= 0)
593  ref0 = map_col_to_list0[0][ref0 + ref_offset];
594  else{
595  ref0 = map_col_to_list0[1][l1ref1[i8] + ref_offset];
596  l1mv= l1mv1;
597  }
598  scale = dist_scale_factor[ref0];
599 
600  fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
601  if(IS_SUB_8X8(sub_mb_type)){
602  const int16_t *mv_col = l1mv[x8*3 + y8*3*b4_stride];
603  int mx = (scale * mv_col[0] + 128) >> 8;
604  int my = (scale * mv_col[1] + 128) >> 8;
605  fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
606  fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4);
607  }else
608  for(i4=0; i4<4; i4++){
609  const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*b4_stride];
610  int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
611  mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
612  mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
613  AV_WN32A(h->mv_cache[1][scan8[i8*4+i4]],
614  pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]));
615  }
616  }
617  }
618  }
619 }
620 
621 void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type){
622  if(h->direct_spatial_mv_pred){
623  pred_spatial_direct_motion(h, mb_type);
624  }else{
625  pred_temp_direct_motion(h, mb_type);
626  }
627 }
#define PICT_BOTTOM_FIELD
Definition: mpegvideo.h:645
int8_t * ref_index[2]
Definition: mpegvideo.h:140
#define B
Definition: dsputil.c:1836
void ff_h264_direct_dist_scale_factor(H264Context *const h)
Definition: h264_direct.c:50
int mb_y
Definition: h264.h:454
int field_picture
whether or not the picture was encoded in separate fields
Definition: mpegvideo.h:192
int mb_height
Definition: h264.h:458
#define MB_TYPE_P0L0
Definition: avcodec.h:814
mpegvideo header.
int16_t mv_cache[2][5 *8][2]
Motion vector cache.
Definition: h264.h:334
H264Context.
Definition: h264.h:258
void ff_thread_await_progress(ThreadFrame *f, int n, int field)
Wait for earlier decoding threads to finish reference pictures.
int picture_structure
Definition: h264.h:375
#define AV_WN32A(p, v)
Definition: intreadwrite.h:458
int slice_type_nos
S free slice type (SI/SP are remapped to I/P)
Definition: h264.h:368
static av_always_inline uint32_t pack16to32(int a, int b)
Definition: h264.h:827
void ff_h264_pred_direct_motion(H264Context *const h, int *mb_type)
Definition: h264_direct.c:621
Definition: vf_drawbox.c:37
#define AV_RN32A(p)
Definition: intreadwrite.h:446
int ref_poc[2][2][32]
h264 POCs of the frames used as reference (FIXME need per slice)
Definition: mpegvideo.h:189
int long_ref
1->long term reference 0->short term reference
Definition: mpegvideo.h:188
uint8_t
int ref_count[2][2]
number of entries in ref_poc (FIXME need per slice)
Definition: mpegvideo.h:190
#define PICT_FRAME
Definition: mpegvideo.h:646
Multithreading support functions.
#define b
Definition: input.c:52
Picture ref_list[2][48]
0..15: frame refs, 16..47: mbaff field refs.
Definition: h264.h:404
int mb_xy
Definition: h264.h:461
unsigned int ref_count[2]
num_ref_idx_l0/1_active_minus1 + 1
Definition: h264.h:401
#define MB_TYPE_P1L1
Definition: avcodec.h:817
int mb_x
Definition: h264.h:454
#define FFMIN3(a, b, c)
Definition: common.h:58
static void pred_temp_direct_motion(H264Context *const h, int *mb_type)
Definition: h264_direct.c:410
#define IS_INTERLACED(a)
Definition: mpegvideo.h:165
#define MB_TYPE_P1L0
Definition: avcodec.h:815
H.264 / AVC / MPEG4 part10 codec.
ThreadFrame tf
Definition: mpegvideo.h:101
void ff_h264_direct_ref_list_init(H264Context *const h)
Definition: h264_direct.c:102
static const uint16_t mask[17]
Definition: lzw.c:38
int active_thread_type
Which multithreading methods are in use by the codec.
Definition: avcodec.h:2533
int reference
Definition: mpegvideo.h:200
int direct_spatial_mv_pred
Definition: h264.h:390
int map_col_to_list0[2][16+32]
Definition: h264.h:395
#define MB_TYPE_16x16_OR_INTRA
int col_parity
Definition: h264.h:391
static const uint8_t scan8[16 *3+3]
Definition: h264.h:811
useful rectangle filling function
#define IS_8X8(a)
Definition: mpegvideo.h:171
int x264_build
Definition: h264.h:452
#define FF_THREAD_FRAME
Decode more than one frame at once.
Definition: avcodec.h:2525
#define MB_TYPE_P0L1
Definition: avcodec.h:816
#define MB_TYPE_DIRECT2
Definition: avcodec.h:810
#define FFMIN(a, b)
Definition: common.h:57
int poc
h264 frame POC
Definition: mpegvideo.h:183
#define MB_TYPE_INTERLACED
Definition: avcodec.h:809
int16_t(*[2] motion_val)[2]
Definition: mpegvideo.h:107
Picture.
Definition: mpegvideo.h:99
SPS sps
current sps
Definition: h264.h:357
static void fill_rectangle(SDL_Surface *screen, int x, int y, int w, int h, int color)
Definition: avplay.c:396
#define MB_TYPE_L0L1
Definition: avcodec.h:820
int dist_scale_factor[32]
Definition: h264.h:393
#define FFABS(a)
Definition: common.h:52
int frame_num
h264 frame_num (raw frame_num from slice header)
Definition: mpegvideo.h:184
int direct_8x8_inference_flag
Definition: h264.h:167
static int get_scale_factor(H264Context *const h, int poc, int poc1, int i)
Definition: h264_direct.c:38
#define HAVE_THREADS
Definition: config.h:251
#define PART_NOT_AVAILABLE
Definition: h264.h:337
Definition: vf_drawbox.c:37
if(ac->has_optimized_func)
static const int8_t mv[256][2]
Definition: 4xm.c:72
static void pred_spatial_direct_motion(H264Context *const h, int *mb_type)
Definition: h264_direct.c:160
int mbaff
h264 1 -> MBAFF frame 0-> not MBAFF
Definition: mpegvideo.h:191
int mb_stride
Definition: h264.h:459
AVCodecContext * avctx
Definition: h264.h:259
#define MB_TYPE_8x16
Definition: avcodec.h:807
Libavcodec external API header.
#define MB_TYPE_16x16
Definition: avcodec.h:805
#define mid_pred
Definition: mathops.h:94
int field_poc[2]
h264 top/bottom POC
Definition: mpegvideo.h:182
static const uint16_t scale[4]
int dist_scale_factor_field[2][32]
Definition: h264.h:394
static void await_reference_mb_row(H264Context *const h, Picture *ref, int mb_y)
Definition: h264_direct.c:143
common internal api header.
#define MB_TYPE_8x8
Definition: avcodec.h:808
Bi-dir predicted.
Definition: avutil.h:255
#define MB_TYPE_16x8
Definition: avcodec.h:806
uint16_t sub_mb_type[4]
Definition: h264.h:378
#define IS_INTRA(x, y)
int col_fieldoff
Definition: h264.h:392
Picture * cur_pic_ptr
Definition: h264.h:271
#define FRAME_MBAFF(h)
Definition: h264.h:64
#define IS_SUB_8X8(a)
Definition: mpegvideo.h:172
#define IS_DIRECT(a)
Definition: mpegvideo.h:166
#define AV_ZERO32(d)
Definition: intreadwrite.h:534
#define IS_16X16(a)
Definition: mpegvideo.h:168
uint32_t * mb2b_xy
Definition: h264.h:350
uint32_t * mb_type
Definition: mpegvideo.h:110
int map_col_to_list0_field[2][2][16+32]
Definition: h264.h:396
#define MB_TYPE_L0
Definition: avcodec.h:818
int b_stride
Definition: h264.h:352
static void fill_colmap(H264Context *h, int map[2][16+32], int list, int field, int colfield, int mbafi)
Definition: h264_direct.c:69
int8_t ref_cache[2][5 *8]
Definition: h264.h:335