Libav
utils.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of Libav.
5  *
6  * Libav is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * Libav is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with Libav; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "config.h"
22 
23 #define _SVID_SOURCE // needed for MAP_ANONYMOUS
24 #include <assert.h>
25 #include <inttypes.h>
26 #include <math.h>
27 #include <stdio.h>
28 #include <string.h>
29 #if HAVE_SYS_MMAN_H
30 #include <sys/mman.h>
31 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
32 #define MAP_ANONYMOUS MAP_ANON
33 #endif
34 #endif
35 #if HAVE_VIRTUALALLOC
36 #define WIN32_LEAN_AND_MEAN
37 #include <windows.h>
38 #endif
39 
40 #include "libavutil/attributes.h"
41 #include "libavutil/avutil.h"
42 #include "libavutil/bswap.h"
43 #include "libavutil/cpu.h"
44 #include "libavutil/intreadwrite.h"
45 #include "libavutil/mathematics.h"
46 #include "libavutil/opt.h"
47 #include "libavutil/pixdesc.h"
48 #include "libavutil/ppc/cpu.h"
49 #include "libavutil/x86/asm.h"
50 #include "libavutil/x86/cpu.h"
51 #include "rgb2rgb.h"
52 #include "swscale.h"
53 #include "swscale_internal.h"
54 
55 unsigned swscale_version(void)
56 {
58 }
59 
60 const char *swscale_configuration(void)
61 {
62  return LIBAV_CONFIGURATION;
63 }
64 
65 const char *swscale_license(void)
66 {
67 #define LICENSE_PREFIX "libswscale license: "
68  return LICENSE_PREFIX LIBAV_LICENSE + sizeof(LICENSE_PREFIX) - 1;
69 }
70 
71 #define RET 0xC3 // near return opcode for x86
72 
73 typedef struct FormatEntry {
77 } FormatEntry;
78 
80  [AV_PIX_FMT_YUV420P] = { 1, 1 },
81  [AV_PIX_FMT_YUYV422] = { 1, 1 },
82  [AV_PIX_FMT_RGB24] = { 1, 1 },
83  [AV_PIX_FMT_BGR24] = { 1, 1 },
84  [AV_PIX_FMT_YUV422P] = { 1, 1 },
85  [AV_PIX_FMT_YUV444P] = { 1, 1 },
86  [AV_PIX_FMT_YUV410P] = { 1, 1 },
87  [AV_PIX_FMT_YUV411P] = { 1, 1 },
88  [AV_PIX_FMT_GRAY8] = { 1, 1 },
89  [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
90  [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
91  [AV_PIX_FMT_PAL8] = { 1, 0 },
92  [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
93  [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
94  [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
95  [AV_PIX_FMT_UYVY422] = { 1, 1 },
96  [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
97  [AV_PIX_FMT_BGR8] = { 1, 1 },
98  [AV_PIX_FMT_BGR4] = { 0, 1 },
99  [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
100  [AV_PIX_FMT_RGB8] = { 1, 1 },
101  [AV_PIX_FMT_RGB4] = { 0, 1 },
102  [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
103  [AV_PIX_FMT_NV12] = { 1, 1 },
104  [AV_PIX_FMT_NV21] = { 1, 1 },
105  [AV_PIX_FMT_ARGB] = { 1, 1 },
106  [AV_PIX_FMT_RGBA] = { 1, 1 },
107  [AV_PIX_FMT_ABGR] = { 1, 1 },
108  [AV_PIX_FMT_BGRA] = { 1, 1 },
109  [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
110  [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
111  [AV_PIX_FMT_YUV440P] = { 1, 1 },
112  [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
113  [AV_PIX_FMT_YUVA420P] = { 1, 1 },
114  [AV_PIX_FMT_YUVA422P] = { 1, 1 },
115  [AV_PIX_FMT_YUVA444P] = { 1, 1 },
116  [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
117  [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
118  [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
119  [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
120  [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
121  [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
122  [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
123  [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
124  [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
125  [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
126  [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
127  [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
128  [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
129  [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
130  [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
131  [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
132  [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
133  [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
134  [AV_PIX_FMT_RGB48BE] = { 1, 1 },
135  [AV_PIX_FMT_RGB48LE] = { 1, 1 },
136  [AV_PIX_FMT_RGB565BE] = { 1, 1 },
137  [AV_PIX_FMT_RGB565LE] = { 1, 1 },
138  [AV_PIX_FMT_RGB555BE] = { 1, 1 },
139  [AV_PIX_FMT_RGB555LE] = { 1, 1 },
140  [AV_PIX_FMT_BGR565BE] = { 1, 1 },
141  [AV_PIX_FMT_BGR565LE] = { 1, 1 },
142  [AV_PIX_FMT_BGR555BE] = { 1, 1 },
143  [AV_PIX_FMT_BGR555LE] = { 1, 1 },
144  [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
145  [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
146  [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
147  [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
148  [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
149  [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
150  [AV_PIX_FMT_RGB444LE] = { 1, 1 },
151  [AV_PIX_FMT_RGB444BE] = { 1, 1 },
152  [AV_PIX_FMT_BGR444LE] = { 1, 1 },
153  [AV_PIX_FMT_BGR444BE] = { 1, 1 },
154  [AV_PIX_FMT_Y400A] = { 1, 0 },
155  [AV_PIX_FMT_BGR48BE] = { 1, 1 },
156  [AV_PIX_FMT_BGR48LE] = { 1, 1 },
157  [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
158  [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
159  [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
160  [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
161  [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
162  [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
163  [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
164  [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
165  [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
166  [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
167  [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
168  [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
169  [AV_PIX_FMT_GBRP] = { 1, 1 },
170  [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
171  [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
172  [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
173  [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
174  [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
175  [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
176  [AV_PIX_FMT_XYZ12BE] = { 0, 0, 1 },
177  [AV_PIX_FMT_XYZ12LE] = { 0, 0, 1 },
178 };
179 
181 {
182  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
183  format_entries[pix_fmt].is_supported_in : 0;
184 }
185 
187 {
188  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
189  format_entries[pix_fmt].is_supported_out : 0;
190 }
191 
193 {
194  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
195  format_entries[pix_fmt].is_supported_endianness : 0;
196 }
197 
198 const char *sws_format_name(enum AVPixelFormat format)
199 {
200  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
201  if (desc)
202  return desc->name;
203  else
204  return "Unknown format";
205 }
206 
207 static double getSplineCoeff(double a, double b, double c, double d,
208  double dist)
209 {
210  if (dist <= 1.0)
211  return ((d * dist + c) * dist + b) * dist + a;
212  else
213  return getSplineCoeff(0.0,
214  b + 2.0 * c + 3.0 * d,
215  c + 3.0 * d,
216  -b - 3.0 * c - 6.0 * d,
217  dist - 1.0);
218 }
219 
220 static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
221  int *outFilterSize, int xInc, int srcW,
222  int dstW, int filterAlign, int one,
223  int flags, int cpu_flags,
224  SwsVector *srcFilter, SwsVector *dstFilter,
225  double param[2], int is_horizontal)
226 {
227  int i;
228  int filterSize;
229  int filter2Size;
230  int minFilterSize;
231  int64_t *filter = NULL;
232  int64_t *filter2 = NULL;
233  const int64_t fone = 1LL << 54;
234  int ret = -1;
235 
236  emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
237 
238  // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
239  FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
240 
241  if (FFABS(xInc - 0x10000) < 10) { // unscaled
242  int i;
243  filterSize = 1;
244  FF_ALLOCZ_OR_GOTO(NULL, filter,
245  dstW * sizeof(*filter) * filterSize, fail);
246 
247  for (i = 0; i < dstW; i++) {
248  filter[i * filterSize] = fone;
249  (*filterPos)[i] = i;
250  }
251  } else if (flags & SWS_POINT) { // lame looking point sampling mode
252  int i;
253  int xDstInSrc;
254  filterSize = 1;
255  FF_ALLOC_OR_GOTO(NULL, filter,
256  dstW * sizeof(*filter) * filterSize, fail);
257 
258  xDstInSrc = xInc / 2 - 0x8000;
259  for (i = 0; i < dstW; i++) {
260  int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
261 
262  (*filterPos)[i] = xx;
263  filter[i] = fone;
264  xDstInSrc += xInc;
265  }
266  } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
267  (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
268  int i;
269  int xDstInSrc;
270  filterSize = 2;
271  FF_ALLOC_OR_GOTO(NULL, filter,
272  dstW * sizeof(*filter) * filterSize, fail);
273 
274  xDstInSrc = xInc / 2 - 0x8000;
275  for (i = 0; i < dstW; i++) {
276  int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
277  int j;
278 
279  (*filterPos)[i] = xx;
280  // bilinear upscale / linear interpolate / area averaging
281  for (j = 0; j < filterSize; j++) {
282  int64_t coeff = fone - FFABS((xx << 16) - xDstInSrc) *
283  (fone >> 16);
284  if (coeff < 0)
285  coeff = 0;
286  filter[i * filterSize + j] = coeff;
287  xx++;
288  }
289  xDstInSrc += xInc;
290  }
291  } else {
292  int64_t xDstInSrc;
293  int sizeFactor;
294 
295  if (flags & SWS_BICUBIC)
296  sizeFactor = 4;
297  else if (flags & SWS_X)
298  sizeFactor = 8;
299  else if (flags & SWS_AREA)
300  sizeFactor = 1; // downscale only, for upscale it is bilinear
301  else if (flags & SWS_GAUSS)
302  sizeFactor = 8; // infinite ;)
303  else if (flags & SWS_LANCZOS)
304  sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
305  else if (flags & SWS_SINC)
306  sizeFactor = 20; // infinite ;)
307  else if (flags & SWS_SPLINE)
308  sizeFactor = 20; // infinite ;)
309  else if (flags & SWS_BILINEAR)
310  sizeFactor = 2;
311  else {
312  sizeFactor = 0; // GCC warning killer
313  assert(0);
314  }
315 
316  if (xInc <= 1 << 16)
317  filterSize = 1 + sizeFactor; // upscale
318  else
319  filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
320 
321  filterSize = FFMIN(filterSize, srcW - 2);
322  filterSize = FFMAX(filterSize, 1);
323 
324  FF_ALLOC_OR_GOTO(NULL, filter,
325  dstW * sizeof(*filter) * filterSize, fail);
326 
327  xDstInSrc = xInc - 0x10000;
328  for (i = 0; i < dstW; i++) {
329  int xx = (xDstInSrc - ((int64_t)(filterSize - 2) << 16)) / (1 << 17);
330  int j;
331  (*filterPos)[i] = xx;
332  for (j = 0; j < filterSize; j++) {
333  int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
334  double floatd;
335  int64_t coeff;
336 
337  if (xInc > 1 << 16)
338  d = d * dstW / srcW;
339  floatd = d * (1.0 / (1 << 30));
340 
341  if (flags & SWS_BICUBIC) {
342  int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
343  int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
344 
345  if (d >= 1LL << 31) {
346  coeff = 0.0;
347  } else {
348  int64_t dd = (d * d) >> 30;
349  int64_t ddd = (dd * d) >> 30;
350 
351  if (d < 1LL << 30)
352  coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
353  (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
354  (6 * (1 << 24) - 2 * B) * (1 << 30);
355  else
356  coeff = (-B - 6 * C) * ddd +
357  (6 * B + 30 * C) * dd +
358  (-12 * B - 48 * C) * d +
359  (8 * B + 24 * C) * (1 << 30);
360  }
361  coeff *= fone >> (30 + 24);
362  }
363 #if 0
364  else if (flags & SWS_X) {
365  double p = param ? param * 0.01 : 0.3;
366  coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
367  coeff *= pow(2.0, -p * d * d);
368  }
369 #endif
370  else if (flags & SWS_X) {
371  double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
372  double c;
373 
374  if (floatd < 1.0)
375  c = cos(floatd * M_PI);
376  else
377  c = -1.0;
378  if (c < 0.0)
379  c = -pow(-c, A);
380  else
381  c = pow(c, A);
382  coeff = (c * 0.5 + 0.5) * fone;
383  } else if (flags & SWS_AREA) {
384  int64_t d2 = d - (1 << 29);
385  if (d2 * xInc < -(1LL << (29 + 16)))
386  coeff = 1.0 * (1LL << (30 + 16));
387  else if (d2 * xInc < (1LL << (29 + 16)))
388  coeff = -d2 * xInc + (1LL << (29 + 16));
389  else
390  coeff = 0.0;
391  coeff *= fone >> (30 + 16);
392  } else if (flags & SWS_GAUSS) {
393  double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
394  coeff = (pow(2.0, -p * floatd * floatd)) * fone;
395  } else if (flags & SWS_SINC) {
396  coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
397  } else if (flags & SWS_LANCZOS) {
398  double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
399  coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
400  (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
401  if (floatd > p)
402  coeff = 0;
403  } else if (flags & SWS_BILINEAR) {
404  coeff = (1 << 30) - d;
405  if (coeff < 0)
406  coeff = 0;
407  coeff *= fone >> 30;
408  } else if (flags & SWS_SPLINE) {
409  double p = -2.196152422706632;
410  coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
411  } else {
412  coeff = 0.0; // GCC warning killer
413  assert(0);
414  }
415 
416  filter[i * filterSize + j] = coeff;
417  xx++;
418  }
419  xDstInSrc += 2 * xInc;
420  }
421  }
422 
423  /* apply src & dst Filter to filter -> filter2
424  * av_free(filter);
425  */
426  assert(filterSize > 0);
427  filter2Size = filterSize;
428  if (srcFilter)
429  filter2Size += srcFilter->length - 1;
430  if (dstFilter)
431  filter2Size += dstFilter->length - 1;
432  assert(filter2Size > 0);
433  FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
434 
435  for (i = 0; i < dstW; i++) {
436  int j, k;
437 
438  if (srcFilter) {
439  for (k = 0; k < srcFilter->length; k++) {
440  for (j = 0; j < filterSize; j++)
441  filter2[i * filter2Size + k + j] +=
442  srcFilter->coeff[k] * filter[i * filterSize + j];
443  }
444  } else {
445  for (j = 0; j < filterSize; j++)
446  filter2[i * filter2Size + j] = filter[i * filterSize + j];
447  }
448  // FIXME dstFilter
449 
450  (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
451  }
452  av_freep(&filter);
453 
454  /* try to reduce the filter-size (step1 find size and shift left) */
455  // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
456  minFilterSize = 0;
457  for (i = dstW - 1; i >= 0; i--) {
458  int min = filter2Size;
459  int j;
460  int64_t cutOff = 0.0;
461 
462  /* get rid of near zero elements on the left by shifting left */
463  for (j = 0; j < filter2Size; j++) {
464  int k;
465  cutOff += FFABS(filter2[i * filter2Size]);
466 
467  if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
468  break;
469 
470  /* preserve monotonicity because the core can't handle the
471  * filter otherwise */
472  if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
473  break;
474 
475  // move filter coefficients left
476  for (k = 1; k < filter2Size; k++)
477  filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
478  filter2[i * filter2Size + k - 1] = 0;
479  (*filterPos)[i]++;
480  }
481 
482  cutOff = 0;
483  /* count near zeros on the right */
484  for (j = filter2Size - 1; j > 0; j--) {
485  cutOff += FFABS(filter2[i * filter2Size + j]);
486 
487  if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
488  break;
489  min--;
490  }
491 
492  if (min > minFilterSize)
493  minFilterSize = min;
494  }
495 
496  if (PPC_ALTIVEC(cpu_flags)) {
497  // we can handle the special case 4, so we don't want to go the full 8
498  if (minFilterSize < 5)
499  filterAlign = 4;
500 
501  /* We really don't want to waste our time doing useless computation, so
502  * fall back on the scalar C code for very small filters.
503  * Vectorizing is worth it only if you have a decent-sized vector. */
504  if (minFilterSize < 3)
505  filterAlign = 1;
506  }
507 
508  if (INLINE_MMX(cpu_flags)) {
509  // special case for unscaled vertical filtering
510  if (minFilterSize == 1 && filterAlign == 2)
511  filterAlign = 1;
512  }
513 
514  assert(minFilterSize > 0);
515  filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
516  assert(filterSize > 0);
517  filter = av_malloc(filterSize * dstW * sizeof(*filter));
518  if (filterSize >= MAX_FILTER_SIZE * 16 /
519  ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
520  goto fail;
521  *outFilterSize = filterSize;
522 
523  if (flags & SWS_PRINT_INFO)
525  "SwScaler: reducing / aligning filtersize %d -> %d\n",
526  filter2Size, filterSize);
527  /* try to reduce the filter-size (step2 reduce it) */
528  for (i = 0; i < dstW; i++) {
529  int j;
530 
531  for (j = 0; j < filterSize; j++) {
532  if (j >= filter2Size)
533  filter[i * filterSize + j] = 0;
534  else
535  filter[i * filterSize + j] = filter2[i * filter2Size + j];
536  if ((flags & SWS_BITEXACT) && j >= minFilterSize)
537  filter[i * filterSize + j] = 0;
538  }
539  }
540 
541  // FIXME try to align filterPos if possible
542 
543  // fix borders
544  if (is_horizontal) {
545  for (i = 0; i < dstW; i++) {
546  int j;
547  if ((*filterPos)[i] < 0) {
548  // move filter coefficients left to compensate for filterPos
549  for (j = 1; j < filterSize; j++) {
550  int left = FFMAX(j + (*filterPos)[i], 0);
551  filter[i * filterSize + left] += filter[i * filterSize + j];
552  filter[i * filterSize + j] = 0;
553  }
554  (*filterPos)[i] = 0;
555  }
556 
557  if ((*filterPos)[i] + filterSize > srcW) {
558  int shift = (*filterPos)[i] + filterSize - srcW;
559  // move filter coefficients right to compensate for filterPos
560  for (j = filterSize - 2; j >= 0; j--) {
561  int right = FFMIN(j + shift, filterSize - 1);
562  filter[i * filterSize + right] += filter[i * filterSize + j];
563  filter[i * filterSize + j] = 0;
564  }
565  (*filterPos)[i] = srcW - filterSize;
566  }
567  }
568  }
569 
570  // Note the +1 is for the MMX scaler which reads over the end
571  /* align at 16 for AltiVec (needed by hScale_altivec_real) */
572  FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
573  *outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
574 
575  /* normalize & store in outFilter */
576  for (i = 0; i < dstW; i++) {
577  int j;
578  int64_t error = 0;
579  int64_t sum = 0;
580 
581  for (j = 0; j < filterSize; j++) {
582  sum += filter[i * filterSize + j];
583  }
584  sum = (sum + one / 2) / one;
585  for (j = 0; j < *outFilterSize; j++) {
586  int64_t v = filter[i * filterSize + j] + error;
587  int intV = ROUNDED_DIV(v, sum);
588  (*outFilter)[i * (*outFilterSize) + j] = intV;
589  error = v - intV * sum;
590  }
591  }
592 
593  (*filterPos)[dstW + 0] =
594  (*filterPos)[dstW + 1] =
595  (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
596  * read over the end */
597  for (i = 0; i < *outFilterSize; i++) {
598  int k = (dstW - 1) * (*outFilterSize) + i;
599  (*outFilter)[k + 1 * (*outFilterSize)] =
600  (*outFilter)[k + 2 * (*outFilterSize)] =
601  (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
602  }
603 
604  ret = 0;
605 
606 fail:
607  av_free(filter);
608  av_free(filter2);
609  return ret;
610 }
611 
612 #if HAVE_MMXEXT_INLINE
613 static av_cold int init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
614  int16_t *filter, int32_t *filterPos,
615  int numSplits)
616 {
617  uint8_t *fragmentA;
618  x86_reg imm8OfPShufW1A;
619  x86_reg imm8OfPShufW2A;
620  x86_reg fragmentLengthA;
621  uint8_t *fragmentB;
622  x86_reg imm8OfPShufW1B;
623  x86_reg imm8OfPShufW2B;
624  x86_reg fragmentLengthB;
625  int fragmentPos;
626 
627  int xpos, i;
628 
629  // create an optimized horizontal scaling routine
630  /* This scaler is made of runtime-generated MMXEXT code using specially tuned
631  * pshufw instructions. For every four output pixels, if four input pixels
632  * are enough for the fast bilinear scaling, then a chunk of fragmentB is
633  * used. If five input pixels are needed, then a chunk of fragmentA is used.
634  */
635 
636  // code fragment
637 
638  __asm__ volatile (
639  "jmp 9f \n\t"
640  // Begin
641  "0: \n\t"
642  "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
643  "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
644  "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
645  "punpcklbw %%mm7, %%mm1 \n\t"
646  "punpcklbw %%mm7, %%mm0 \n\t"
647  "pshufw $0xFF, %%mm1, %%mm1 \n\t"
648  "1: \n\t"
649  "pshufw $0xFF, %%mm0, %%mm0 \n\t"
650  "2: \n\t"
651  "psubw %%mm1, %%mm0 \n\t"
652  "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
653  "pmullw %%mm3, %%mm0 \n\t"
654  "psllw $7, %%mm1 \n\t"
655  "paddw %%mm1, %%mm0 \n\t"
656 
657  "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
658 
659  "add $8, %%"REG_a" \n\t"
660  // End
661  "9: \n\t"
662  // "int $3 \n\t"
663  "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
664  "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
665  "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
666  "dec %1 \n\t"
667  "dec %2 \n\t"
668  "sub %0, %1 \n\t"
669  "sub %0, %2 \n\t"
670  "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
671  "sub %0, %3 \n\t"
672 
673 
674  : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
675  "=r" (fragmentLengthA)
676  );
677 
678  __asm__ volatile (
679  "jmp 9f \n\t"
680  // Begin
681  "0: \n\t"
682  "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
683  "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
684  "punpcklbw %%mm7, %%mm0 \n\t"
685  "pshufw $0xFF, %%mm0, %%mm1 \n\t"
686  "1: \n\t"
687  "pshufw $0xFF, %%mm0, %%mm0 \n\t"
688  "2: \n\t"
689  "psubw %%mm1, %%mm0 \n\t"
690  "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
691  "pmullw %%mm3, %%mm0 \n\t"
692  "psllw $7, %%mm1 \n\t"
693  "paddw %%mm1, %%mm0 \n\t"
694 
695  "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
696 
697  "add $8, %%"REG_a" \n\t"
698  // End
699  "9: \n\t"
700  // "int $3 \n\t"
701  "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
702  "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
703  "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
704  "dec %1 \n\t"
705  "dec %2 \n\t"
706  "sub %0, %1 \n\t"
707  "sub %0, %2 \n\t"
708  "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
709  "sub %0, %3 \n\t"
710 
711 
712  : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
713  "=r" (fragmentLengthB)
714  );
715 
716  xpos = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
717  fragmentPos = 0;
718 
719  for (i = 0; i < dstW / numSplits; i++) {
720  int xx = xpos >> 16;
721 
722  if ((i & 3) == 0) {
723  int a = 0;
724  int b = ((xpos + xInc) >> 16) - xx;
725  int c = ((xpos + xInc * 2) >> 16) - xx;
726  int d = ((xpos + xInc * 3) >> 16) - xx;
727  int inc = (d + 1 < 4);
728  uint8_t *fragment = (d + 1 < 4) ? fragmentB : fragmentA;
729  x86_reg imm8OfPShufW1 = (d + 1 < 4) ? imm8OfPShufW1B : imm8OfPShufW1A;
730  x86_reg imm8OfPShufW2 = (d + 1 < 4) ? imm8OfPShufW2B : imm8OfPShufW2A;
731  x86_reg fragmentLength = (d + 1 < 4) ? fragmentLengthB : fragmentLengthA;
732  int maxShift = 3 - (d + inc);
733  int shift = 0;
734 
735  if (filterCode) {
736  filter[i] = ((xpos & 0xFFFF) ^ 0xFFFF) >> 9;
737  filter[i + 1] = (((xpos + xInc) & 0xFFFF) ^ 0xFFFF) >> 9;
738  filter[i + 2] = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
739  filter[i + 3] = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
740  filterPos[i / 2] = xx;
741 
742  memcpy(filterCode + fragmentPos, fragment, fragmentLength);
743 
744  filterCode[fragmentPos + imm8OfPShufW1] = (a + inc) |
745  ((b + inc) << 2) |
746  ((c + inc) << 4) |
747  ((d + inc) << 6);
748  filterCode[fragmentPos + imm8OfPShufW2] = a | (b << 2) |
749  (c << 4) |
750  (d << 6);
751 
752  if (i + 4 - inc >= dstW)
753  shift = maxShift; // avoid overread
754  else if ((filterPos[i / 2] & 3) <= maxShift)
755  shift = filterPos[i / 2] & 3; // align
756 
757  if (shift && i >= shift) {
758  filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
759  filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
760  filterPos[i / 2] -= shift;
761  }
762  }
763 
764  fragmentPos += fragmentLength;
765 
766  if (filterCode)
767  filterCode[fragmentPos] = RET;
768  }
769  xpos += xInc;
770  }
771  if (filterCode)
772  filterPos[((i / 2) + 1) & (~1)] = xpos >> 16; // needed to jump to the next part
773 
774  return fragmentPos + 1;
775 }
776 #endif /* HAVE_MMXEXT_INLINE */
777 
778 static void getSubSampleFactors(int *h, int *v, enum AVPixelFormat format)
779 {
780  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
781  *h = desc->log2_chroma_w;
782  *v = desc->log2_chroma_h;
783 }
784 
785 int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
786  int srcRange, const int table[4], int dstRange,
787  int brightness, int contrast, int saturation)
788 {
789  const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(c->dstFormat);
790  const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(c->srcFormat);
791  memcpy(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
792  memcpy(c->dstColorspaceTable, table, sizeof(int) * 4);
793 
794  c->brightness = brightness;
795  c->contrast = contrast;
796  c->saturation = saturation;
797  c->srcRange = srcRange;
798  c->dstRange = dstRange;
799  if (isYUV(c->dstFormat) || isGray(c->dstFormat))
800  return -1;
801 
802  c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
803  c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
804 
805  ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
806  contrast, saturation);
807  // FIXME factorize
808 
809  if (ARCH_PPC)
810  ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
811  contrast, saturation);
812  return 0;
813 }
814 
815 int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
816  int *srcRange, int **table, int *dstRange,
817  int *brightness, int *contrast, int *saturation)
818 {
819  if (isYUV(c->dstFormat) || isGray(c->dstFormat))
820  return -1;
821 
822  *inv_table = c->srcColorspaceTable;
823  *table = c->dstColorspaceTable;
824  *srcRange = c->srcRange;
825  *dstRange = c->dstRange;
826  *brightness = c->brightness;
827  *contrast = c->contrast;
828  *saturation = c->saturation;
829 
830  return 0;
831 }
832 
833 static int handle_jpeg(enum AVPixelFormat *format)
834 {
835  switch (*format) {
836  case AV_PIX_FMT_YUVJ420P:
837  *format = AV_PIX_FMT_YUV420P;
838  return 1;
839  case AV_PIX_FMT_YUVJ422P:
840  *format = AV_PIX_FMT_YUV422P;
841  return 1;
842  case AV_PIX_FMT_YUVJ444P:
843  *format = AV_PIX_FMT_YUV444P;
844  return 1;
845  case AV_PIX_FMT_YUVJ440P:
846  *format = AV_PIX_FMT_YUV440P;
847  return 1;
848  default:
849  return 0;
850  }
851 }
852 
854 {
855  SwsContext *c = av_mallocz(sizeof(SwsContext));
856 
857  if (c) {
860  }
861 
862  return c;
863 }
864 
866  SwsFilter *dstFilter)
867 {
868  int i;
869  int usesVFilter, usesHFilter;
870  int unscaled;
871  SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
872  int srcW = c->srcW;
873  int srcH = c->srcH;
874  int dstW = c->dstW;
875  int dstH = c->dstH;
876  int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 16, 16);
877  int dst_stride_px = dst_stride >> 1;
878  int flags, cpu_flags;
879  enum AVPixelFormat srcFormat = c->srcFormat;
880  enum AVPixelFormat dstFormat = c->dstFormat;
881  const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(srcFormat);
882  const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(dstFormat);
883 
884  cpu_flags = av_get_cpu_flags();
885  flags = c->flags;
886  emms_c();
887  if (!rgb15to16)
889 
890  unscaled = (srcW == dstW && srcH == dstH);
891 
892  if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
893  av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
894  if (!sws_isSupportedInput(srcFormat)) {
895  av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
896  sws_format_name(srcFormat));
897  return AVERROR(EINVAL);
898  }
899  if (!sws_isSupportedOutput(dstFormat)) {
900  av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
901  sws_format_name(dstFormat));
902  return AVERROR(EINVAL);
903  }
904  }
905 
906  i = flags & (SWS_POINT |
907  SWS_AREA |
908  SWS_BILINEAR |
910  SWS_BICUBIC |
911  SWS_X |
912  SWS_GAUSS |
913  SWS_LANCZOS |
914  SWS_SINC |
915  SWS_SPLINE |
916  SWS_BICUBLIN);
917 
918  /* provide a default scaler if not set by caller */
919  if (!i) {
920  if (dstW < srcW && dstH < srcH)
921  flags |= SWS_GAUSS;
922  else if (dstW > srcW && dstH > srcH)
923  flags |= SWS_SINC;
924  else
925  flags |= SWS_LANCZOS;
926  c->flags = flags;
927  } else if (i & (i - 1)) {
928  av_log(c, AV_LOG_ERROR,
929  "Exactly one scaler algorithm must be chosen\n");
930  return AVERROR(EINVAL);
931  }
932  /* sanity check */
933  if (srcW < 4 || srcH < 1 || dstW < 8 || dstH < 1) {
934  /* FIXME check if these are enough and try to lower them after
935  * fixing the relevant parts of the code */
936  av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
937  srcW, srcH, dstW, dstH);
938  return AVERROR(EINVAL);
939  }
940 
941  if (!dstFilter)
942  dstFilter = &dummyFilter;
943  if (!srcFilter)
944  srcFilter = &dummyFilter;
945 
946  c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
947  c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
948  c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
949  c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
950  c->vRounder = 4 * 0x0001000100010001ULL;
951 
952  usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
953  (srcFilter->chrV && srcFilter->chrV->length > 1) ||
954  (dstFilter->lumV && dstFilter->lumV->length > 1) ||
955  (dstFilter->chrV && dstFilter->chrV->length > 1);
956  usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
957  (srcFilter->chrH && srcFilter->chrH->length > 1) ||
958  (dstFilter->lumH && dstFilter->lumH->length > 1) ||
959  (dstFilter->chrH && dstFilter->chrH->length > 1);
960 
963 
964  if (isPlanarRGB(dstFormat)) {
965  if (!(flags & SWS_FULL_CHR_H_INT)) {
966  av_log(c, AV_LOG_DEBUG,
967  "%s output is not supported with half chroma resolution, switching to full\n",
968  av_get_pix_fmt_name(dstFormat));
969  flags |= SWS_FULL_CHR_H_INT;
970  c->flags = flags;
971  }
972  }
973 
974  /* reuse chroma for 2 pixels RGB/BGR unless user wants full
975  * chroma interpolation */
976  if (flags & SWS_FULL_CHR_H_INT &&
977  isAnyRGB(dstFormat) &&
978  !isPlanarRGB(dstFormat) &&
979  dstFormat != AV_PIX_FMT_RGBA &&
980  dstFormat != AV_PIX_FMT_ARGB &&
981  dstFormat != AV_PIX_FMT_BGRA &&
982  dstFormat != AV_PIX_FMT_ABGR &&
983  dstFormat != AV_PIX_FMT_RGB24 &&
984  dstFormat != AV_PIX_FMT_BGR24) {
985  av_log(c, AV_LOG_ERROR,
986  "full chroma interpolation for destination format '%s' not yet implemented\n",
987  sws_format_name(dstFormat));
988  flags &= ~SWS_FULL_CHR_H_INT;
989  c->flags = flags;
990  }
991  if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
992  c->chrDstHSubSample = 1;
993 
994  // drop some chroma lines if the user wants it
995  c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
997  c->chrSrcVSubSample += c->vChrDrop;
998 
999  /* drop every other pixel for chroma calculation unless user
1000  * wants full chroma */
1001  if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
1002  srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
1003  srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
1004  srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
1005  srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
1006  srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
1007  srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
1008  ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
1009  (flags & SWS_FAST_BILINEAR)))
1010  c->chrSrcHSubSample = 1;
1011 
1012  // Note the -((-x)>>y) is so that we always round toward +inf.
1013  c->chrSrcW = -((-srcW) >> c->chrSrcHSubSample);
1014  c->chrSrcH = -((-srcH) >> c->chrSrcVSubSample);
1015  c->chrDstW = -((-dstW) >> c->chrDstHSubSample);
1016  c->chrDstH = -((-dstH) >> c->chrDstVSubSample);
1017 
1018  /* unscaled special cases */
1019  if (unscaled && !usesHFilter && !usesVFilter &&
1020  (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
1022 
1023  if (c->swscale) {
1024  if (flags & SWS_PRINT_INFO)
1025  av_log(c, AV_LOG_INFO,
1026  "using unscaled %s -> %s special converter\n",
1027  sws_format_name(srcFormat), sws_format_name(dstFormat));
1028  return 0;
1029  }
1030  }
1031 
1032  c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
1033  if (c->srcBpc < 8)
1034  c->srcBpc = 8;
1035  c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
1036  if (c->dstBpc < 8)
1037  c->dstBpc = 8;
1038  if (c->dstBpc == 16)
1039  dst_stride <<= 1;
1041  (FFALIGN(srcW, 16) * 2 * FFALIGN(c->srcBpc, 8) >> 3) + 16,
1042  fail);
1043  if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 10) {
1044  c->canMMXEXTBeUsed = (dstW >= srcW && (dstW & 31) == 0 &&
1045  (srcW & 15) == 0) ? 1 : 0;
1046  if (!c->canMMXEXTBeUsed && dstW >= srcW && (srcW & 15) == 0
1047  && (flags & SWS_FAST_BILINEAR)) {
1048  if (flags & SWS_PRINT_INFO)
1049  av_log(c, AV_LOG_INFO,
1050  "output width is not a multiple of 32 -> no MMXEXT scaler\n");
1051  }
1052  if (usesHFilter)
1053  c->canMMXEXTBeUsed = 0;
1054  } else
1055  c->canMMXEXTBeUsed = 0;
1056 
1057  c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
1058  c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
1059 
1060  /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
1061  * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
1062  * correct scaling.
1063  * n-2 is the last chrominance sample available.
1064  * This is not perfect, but no one should notice the difference, the more
1065  * correct variant would be like the vertical one, but that would require
1066  * some special code for the first and last pixel */
1067  if (flags & SWS_FAST_BILINEAR) {
1068  if (c->canMMXEXTBeUsed) {
1069  c->lumXInc += 20;
1070  c->chrXInc += 20;
1071  }
1072  // we don't use the x86 asm scaler if MMX is available
1073  else if (INLINE_MMX(cpu_flags)) {
1074  c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
1075  c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
1076  }
1077  }
1078 
1079 #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
1080 
1081  /* precalculate horizontal scaler filter coefficients */
1082  {
1083 #if HAVE_MMXEXT_INLINE
1084 // can't downscale !!!
1085  if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
1086  c->lumMmxextFilterCodeSize = init_hscaler_mmxext(dstW, c->lumXInc, NULL,
1087  NULL, NULL, 8);
1088  c->chrMmxextFilterCodeSize = init_hscaler_mmxext(c->chrDstW, c->chrXInc,
1089  NULL, NULL, NULL, 4);
1090 
1091 #if USE_MMAP
1093  PROT_READ | PROT_WRITE,
1094  MAP_PRIVATE | MAP_ANONYMOUS,
1095  -1, 0);
1097  PROT_READ | PROT_WRITE,
1098  MAP_PRIVATE | MAP_ANONYMOUS,
1099  -1, 0);
1100 #elif HAVE_VIRTUALALLOC
1101  c->lumMmxextFilterCode = VirtualAlloc(NULL,
1103  MEM_COMMIT,
1104  PAGE_EXECUTE_READWRITE);
1105  c->chrMmxextFilterCode = VirtualAlloc(NULL,
1107  MEM_COMMIT,
1108  PAGE_EXECUTE_READWRITE);
1109 #else
1112 #endif
1113 
1115  return AVERROR(ENOMEM);
1116  FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
1117  FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
1118  FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
1119  FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
1120 
1121  init_hscaler_mmxext(dstW, c->lumXInc, c->lumMmxextFilterCode,
1122  c->hLumFilter, c->hLumFilterPos, 8);
1123  init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
1124  c->hChrFilter, c->hChrFilterPos, 4);
1125 
1126 #if USE_MMAP
1127  mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
1128  mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
1129 #endif
1130  } else
1131 #endif /* HAVE_MMXEXT_INLINE */
1132  {
1133  const int filterAlign = X86_MMX(cpu_flags) ? 4 :
1134  PPC_ALTIVEC(cpu_flags) ? 8 : 1;
1135 
1136  if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
1137  &c->hLumFilterSize, c->lumXInc,
1138  srcW, dstW, filterAlign, 1 << 14,
1139  (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1140  cpu_flags, srcFilter->lumH, dstFilter->lumH,
1141  c->param, 1) < 0)
1142  goto fail;
1143  if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
1144  &c->hChrFilterSize, c->chrXInc,
1145  c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
1146  (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1147  cpu_flags, srcFilter->chrH, dstFilter->chrH,
1148  c->param, 1) < 0)
1149  goto fail;
1150  }
1151  } // initialize horizontal stuff
1152 
1153  /* precalculate vertical scaler filter coefficients */
1154  {
1155  const int filterAlign = X86_MMX(cpu_flags) ? 2 :
1156  PPC_ALTIVEC(cpu_flags) ? 8 : 1;
1157 
1159  c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
1160  (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1161  cpu_flags, srcFilter->lumV, dstFilter->lumV,
1162  c->param, 0) < 0)
1163  goto fail;
1165  c->chrYInc, c->chrSrcH, c->chrDstH,
1166  filterAlign, (1 << 12),
1167  (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1168  cpu_flags, srcFilter->chrV, dstFilter->chrV,
1169  c->param, 0) < 0)
1170  goto fail;
1171 
1172 #if HAVE_ALTIVEC
1173  FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
1174  FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
1175 
1176  for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
1177  int j;
1178  short *p = (short *)&c->vYCoeffsBank[i];
1179  for (j = 0; j < 8; j++)
1180  p[j] = c->vLumFilter[i];
1181  }
1182 
1183  for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
1184  int j;
1185  short *p = (short *)&c->vCCoeffsBank[i];
1186  for (j = 0; j < 8; j++)
1187  p[j] = c->vChrFilter[i];
1188  }
1189 #endif
1190  }
1191 
1192  // calculate buffer sizes so that they won't run out while handling these damn slices
1193  c->vLumBufSize = c->vLumFilterSize;
1194  c->vChrBufSize = c->vChrFilterSize;
1195  for (i = 0; i < dstH; i++) {
1196  int chrI = (int64_t)i * c->chrDstH / dstH;
1197  int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
1198  ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
1199  << c->chrSrcVSubSample));
1200 
1201  nextSlice >>= c->chrSrcVSubSample;
1202  nextSlice <<= c->chrSrcVSubSample;
1203  if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
1204  c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
1205  if (c->vChrFilterPos[chrI] + c->vChrBufSize <
1206  (nextSlice >> c->chrSrcVSubSample))
1207  c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
1208  c->vChrFilterPos[chrI];
1209  }
1210 
1211  /* Allocate pixbufs (we use dynamic allocation because otherwise we would
1212  * need to allocate several megabytes to handle all possible cases) */
1213  FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
1214  FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
1215  FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
1217  FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
1218  /* Note we need at least one pixel more at the end because of the MMX code
1219  * (just in case someone wants to replace the 4000/8000). */
1220  /* align at 16 bytes for AltiVec */
1221  for (i = 0; i < c->vLumBufSize; i++) {
1222  FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
1223  dst_stride + 16, fail);
1224  c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
1225  }
1226  // 64 / (c->dstBpc & ~7) is the same as 16 / sizeof(scaling_intermediate)
1227  c->uv_off_px = dst_stride_px + 64 / (c->dstBpc & ~7);
1228  c->uv_off_byte = dst_stride + 16;
1229  for (i = 0; i < c->vChrBufSize; i++) {
1230  FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
1231  dst_stride * 2 + 32, fail);
1232  c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
1233  c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
1234  = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
1235  }
1236  if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
1237  for (i = 0; i < c->vLumBufSize; i++) {
1238  FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
1239  dst_stride + 16, fail);
1240  c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
1241  }
1242 
1243  // try to avoid drawing green stuff between the right end and the stride end
1244  for (i = 0; i < c->vChrBufSize; i++)
1245  memset(c->chrUPixBuf[i], 64, dst_stride * 2 + 1);
1246 
1247  assert(c->chrDstH <= dstH);
1248 
1249  if (flags & SWS_PRINT_INFO) {
1250  if (flags & SWS_FAST_BILINEAR)
1251  av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
1252  else if (flags & SWS_BILINEAR)
1253  av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
1254  else if (flags & SWS_BICUBIC)
1255  av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
1256  else if (flags & SWS_X)
1257  av_log(c, AV_LOG_INFO, "Experimental scaler, ");
1258  else if (flags & SWS_POINT)
1259  av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
1260  else if (flags & SWS_AREA)
1261  av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
1262  else if (flags & SWS_BICUBLIN)
1263  av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
1264  else if (flags & SWS_GAUSS)
1265  av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
1266  else if (flags & SWS_SINC)
1267  av_log(c, AV_LOG_INFO, "Sinc scaler, ");
1268  else if (flags & SWS_LANCZOS)
1269  av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
1270  else if (flags & SWS_SPLINE)
1271  av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
1272  else
1273  av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
1274 
1275  av_log(c, AV_LOG_INFO, "from %s to %s%s ",
1276  sws_format_name(srcFormat),
1277 #ifdef DITHER1XBPP
1278  dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
1279  dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
1280  dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
1281  "dithered " : "",
1282 #else
1283  "",
1284 #endif
1285  sws_format_name(dstFormat));
1286 
1287  if (INLINE_MMXEXT(cpu_flags))
1288  av_log(c, AV_LOG_INFO, "using MMXEXT\n");
1289  else if (INLINE_AMD3DNOW(cpu_flags))
1290  av_log(c, AV_LOG_INFO, "using 3DNOW\n");
1291  else if (INLINE_MMX(cpu_flags))
1292  av_log(c, AV_LOG_INFO, "using MMX\n");
1293  else if (PPC_ALTIVEC(cpu_flags))
1294  av_log(c, AV_LOG_INFO, "using AltiVec\n");
1295  else
1296  av_log(c, AV_LOG_INFO, "using C\n");
1297 
1298  av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
1299  av_log(c, AV_LOG_DEBUG,
1300  "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1301  c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
1302  av_log(c, AV_LOG_DEBUG,
1303  "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1304  c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
1305  c->chrXInc, c->chrYInc);
1306  }
1307 
1308  c->swscale = ff_getSwsFunc(c);
1309  return 0;
1310 fail: // FIXME replace things by appropriate error codes
1311  return -1;
1312 }
1313 
1314 #if FF_API_SWS_GETCONTEXT
1315 SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
1316  int dstW, int dstH, enum AVPixelFormat dstFormat,
1317  int flags, SwsFilter *srcFilter,
1318  SwsFilter *dstFilter, const double *param)
1319 {
1320  SwsContext *c;
1321 
1322  if (!(c = sws_alloc_context()))
1323  return NULL;
1324 
1325  c->flags = flags;
1326  c->srcW = srcW;
1327  c->srcH = srcH;
1328  c->dstW = dstW;
1329  c->dstH = dstH;
1330  c->srcRange = handle_jpeg(&srcFormat);
1331  c->dstRange = handle_jpeg(&dstFormat);
1332  c->srcFormat = srcFormat;
1333  c->dstFormat = dstFormat;
1334 
1335  if (param) {
1336  c->param[0] = param[0];
1337  c->param[1] = param[1];
1338  }
1340  ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
1341  c->dstRange, 0, 1 << 16, 1 << 16);
1342 
1343  if (sws_init_context(c, srcFilter, dstFilter) < 0) {
1344  sws_freeContext(c);
1345  return NULL;
1346  }
1347 
1348  return c;
1349 }
1350 #endif
1351 
1352 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
1353  float lumaSharpen, float chromaSharpen,
1354  float chromaHShift, float chromaVShift,
1355  int verbose)
1356 {
1357  SwsFilter *filter = av_malloc(sizeof(SwsFilter));
1358  if (!filter)
1359  return NULL;
1360 
1361  if (lumaGBlur != 0.0) {
1362  filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
1363  filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
1364  } else {
1365  filter->lumH = sws_getIdentityVec();
1366  filter->lumV = sws_getIdentityVec();
1367  }
1368 
1369  if (chromaGBlur != 0.0) {
1370  filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
1371  filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
1372  } else {
1373  filter->chrH = sws_getIdentityVec();
1374  filter->chrV = sws_getIdentityVec();
1375  }
1376 
1377  if (chromaSharpen != 0.0) {
1378  SwsVector *id = sws_getIdentityVec();
1379  sws_scaleVec(filter->chrH, -chromaSharpen);
1380  sws_scaleVec(filter->chrV, -chromaSharpen);
1381  sws_addVec(filter->chrH, id);
1382  sws_addVec(filter->chrV, id);
1383  sws_freeVec(id);
1384  }
1385 
1386  if (lumaSharpen != 0.0) {
1387  SwsVector *id = sws_getIdentityVec();
1388  sws_scaleVec(filter->lumH, -lumaSharpen);
1389  sws_scaleVec(filter->lumV, -lumaSharpen);
1390  sws_addVec(filter->lumH, id);
1391  sws_addVec(filter->lumV, id);
1392  sws_freeVec(id);
1393  }
1394 
1395  if (chromaHShift != 0.0)
1396  sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
1397 
1398  if (chromaVShift != 0.0)
1399  sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
1400 
1401  sws_normalizeVec(filter->chrH, 1.0);
1402  sws_normalizeVec(filter->chrV, 1.0);
1403  sws_normalizeVec(filter->lumH, 1.0);
1404  sws_normalizeVec(filter->lumV, 1.0);
1405 
1406  if (verbose)
1407  sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
1408  if (verbose)
1409  sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
1410 
1411  return filter;
1412 }
1413 
1415 {
1416  SwsVector *vec = av_malloc(sizeof(SwsVector));
1417  if (!vec)
1418  return NULL;
1419  vec->length = length;
1420  vec->coeff = av_malloc(sizeof(double) * length);
1421  if (!vec->coeff)
1422  av_freep(&vec);
1423  return vec;
1424 }
1425 
1426 SwsVector *sws_getGaussianVec(double variance, double quality)
1427 {
1428  const int length = (int)(variance * quality + 0.5) | 1;
1429  int i;
1430  double middle = (length - 1) * 0.5;
1431  SwsVector *vec = sws_allocVec(length);
1432 
1433  if (!vec)
1434  return NULL;
1435 
1436  for (i = 0; i < length; i++) {
1437  double dist = i - middle;
1438  vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
1439  sqrt(2 * variance * M_PI);
1440  }
1441 
1442  sws_normalizeVec(vec, 1.0);
1443 
1444  return vec;
1445 }
1446 
1447 SwsVector *sws_getConstVec(double c, int length)
1448 {
1449  int i;
1450  SwsVector *vec = sws_allocVec(length);
1451 
1452  if (!vec)
1453  return NULL;
1454 
1455  for (i = 0; i < length; i++)
1456  vec->coeff[i] = c;
1457 
1458  return vec;
1459 }
1460 
1462 {
1463  return sws_getConstVec(1.0, 1);
1464 }
1465 
1466 static double sws_dcVec(SwsVector *a)
1467 {
1468  int i;
1469  double sum = 0;
1470 
1471  for (i = 0; i < a->length; i++)
1472  sum += a->coeff[i];
1473 
1474  return sum;
1475 }
1476 
1477 void sws_scaleVec(SwsVector *a, double scalar)
1478 {
1479  int i;
1480 
1481  for (i = 0; i < a->length; i++)
1482  a->coeff[i] *= scalar;
1483 }
1484 
1486 {
1487  sws_scaleVec(a, height / sws_dcVec(a));
1488 }
1489 
1491 {
1492  int length = a->length + b->length - 1;
1493  int i, j;
1494  SwsVector *vec = sws_getConstVec(0.0, length);
1495 
1496  if (!vec)
1497  return NULL;
1498 
1499  for (i = 0; i < a->length; i++) {
1500  for (j = 0; j < b->length; j++) {
1501  vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
1502  }
1503  }
1504 
1505  return vec;
1506 }
1507 
1509 {
1510  int length = FFMAX(a->length, b->length);
1511  int i;
1512  SwsVector *vec = sws_getConstVec(0.0, length);
1513 
1514  if (!vec)
1515  return NULL;
1516 
1517  for (i = 0; i < a->length; i++)
1518  vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
1519  for (i = 0; i < b->length; i++)
1520  vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
1521 
1522  return vec;
1523 }
1524 
1526 {
1527  int length = FFMAX(a->length, b->length);
1528  int i;
1529  SwsVector *vec = sws_getConstVec(0.0, length);
1530 
1531  if (!vec)
1532  return NULL;
1533 
1534  for (i = 0; i < a->length; i++)
1535  vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
1536  for (i = 0; i < b->length; i++)
1537  vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
1538 
1539  return vec;
1540 }
1541 
1542 /* shift left / or right if "shift" is negative */
1543 static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
1544 {
1545  int length = a->length + FFABS(shift) * 2;
1546  int i;
1547  SwsVector *vec = sws_getConstVec(0.0, length);
1548 
1549  if (!vec)
1550  return NULL;
1551 
1552  for (i = 0; i < a->length; i++) {
1553  vec->coeff[i + (length - 1) / 2 -
1554  (a->length - 1) / 2 - shift] = a->coeff[i];
1555  }
1556 
1557  return vec;
1558 }
1559 
1560 void sws_shiftVec(SwsVector *a, int shift)
1561 {
1562  SwsVector *shifted = sws_getShiftedVec(a, shift);
1563  av_free(a->coeff);
1564  a->coeff = shifted->coeff;
1565  a->length = shifted->length;
1566  av_free(shifted);
1567 }
1568 
1570 {
1571  SwsVector *sum = sws_sumVec(a, b);
1572  av_free(a->coeff);
1573  a->coeff = sum->coeff;
1574  a->length = sum->length;
1575  av_free(sum);
1576 }
1577 
1579 {
1580  SwsVector *diff = sws_diffVec(a, b);
1581  av_free(a->coeff);
1582  a->coeff = diff->coeff;
1583  a->length = diff->length;
1584  av_free(diff);
1585 }
1586 
1588 {
1589  SwsVector *conv = sws_getConvVec(a, b);
1590  av_free(a->coeff);
1591  a->coeff = conv->coeff;
1592  a->length = conv->length;
1593  av_free(conv);
1594 }
1595 
1597 {
1598  int i;
1599  SwsVector *vec = sws_allocVec(a->length);
1600 
1601  if (!vec)
1602  return NULL;
1603 
1604  for (i = 0; i < a->length; i++)
1605  vec->coeff[i] = a->coeff[i];
1606 
1607  return vec;
1608 }
1609 
1610 void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
1611 {
1612  int i;
1613  double max = 0;
1614  double min = 0;
1615  double range;
1616 
1617  for (i = 0; i < a->length; i++)
1618  if (a->coeff[i] > max)
1619  max = a->coeff[i];
1620 
1621  for (i = 0; i < a->length; i++)
1622  if (a->coeff[i] < min)
1623  min = a->coeff[i];
1624 
1625  range = max - min;
1626 
1627  for (i = 0; i < a->length; i++) {
1628  int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
1629  av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
1630  for (; x > 0; x--)
1631  av_log(log_ctx, log_level, " ");
1632  av_log(log_ctx, log_level, "|\n");
1633  }
1634 }
1635 
1637 {
1638  if (!a)
1639  return;
1640  av_freep(&a->coeff);
1641  a->length = 0;
1642  av_free(a);
1643 }
1644 
1646 {
1647  if (!filter)
1648  return;
1649 
1650  if (filter->lumH)
1651  sws_freeVec(filter->lumH);
1652  if (filter->lumV)
1653  sws_freeVec(filter->lumV);
1654  if (filter->chrH)
1655  sws_freeVec(filter->chrH);
1656  if (filter->chrV)
1657  sws_freeVec(filter->chrV);
1658  av_free(filter);
1659 }
1660 
1662 {
1663  int i;
1664  if (!c)
1665  return;
1666 
1667  if (c->lumPixBuf) {
1668  for (i = 0; i < c->vLumBufSize; i++)
1669  av_freep(&c->lumPixBuf[i]);
1670  av_freep(&c->lumPixBuf);
1671  }
1672 
1673  if (c->chrUPixBuf) {
1674  for (i = 0; i < c->vChrBufSize; i++)
1675  av_freep(&c->chrUPixBuf[i]);
1676  av_freep(&c->chrUPixBuf);
1677  av_freep(&c->chrVPixBuf);
1678  }
1679 
1680  if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
1681  for (i = 0; i < c->vLumBufSize; i++)
1682  av_freep(&c->alpPixBuf[i]);
1683  av_freep(&c->alpPixBuf);
1684  }
1685 
1686  av_freep(&c->vLumFilter);
1687  av_freep(&c->vChrFilter);
1688  av_freep(&c->hLumFilter);
1689  av_freep(&c->hChrFilter);
1690 #if HAVE_ALTIVEC
1691  av_freep(&c->vYCoeffsBank);
1692  av_freep(&c->vCCoeffsBank);
1693 #endif
1694 
1695  av_freep(&c->vLumFilterPos);
1696  av_freep(&c->vChrFilterPos);
1697  av_freep(&c->hLumFilterPos);
1698  av_freep(&c->hChrFilterPos);
1699 
1700 #if HAVE_MMX_INLINE
1701 #if USE_MMAP
1702  if (c->lumMmxextFilterCode)
1704  if (c->chrMmxextFilterCode)
1706 #elif HAVE_VIRTUALALLOC
1707  if (c->lumMmxextFilterCode)
1708  VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
1709  if (c->chrMmxextFilterCode)
1710  VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
1711 #else
1714 #endif
1717 #endif /* HAVE_MMX_INLINE */
1718 
1719  av_freep(&c->yuvTable);
1721 
1722  av_free(c);
1723 }
1724 
1725 struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
1726  int srcH, enum AVPixelFormat srcFormat,
1727  int dstW, int dstH,
1728  enum AVPixelFormat dstFormat, int flags,
1729  SwsFilter *srcFilter,
1730  SwsFilter *dstFilter,
1731  const double *param)
1732 {
1733  static const double default_param[2] = { SWS_PARAM_DEFAULT,
1735 
1736  if (!param)
1737  param = default_param;
1738 
1739  if (context &&
1740  (context->srcW != srcW ||
1741  context->srcH != srcH ||
1742  context->srcFormat != srcFormat ||
1743  context->dstW != dstW ||
1744  context->dstH != dstH ||
1745  context->dstFormat != dstFormat ||
1746  context->flags != flags ||
1747  context->param[0] != param[0] ||
1748  context->param[1] != param[1])) {
1749  sws_freeContext(context);
1750  context = NULL;
1751  }
1752 
1753  if (!context) {
1754  if (!(context = sws_alloc_context()))
1755  return NULL;
1756  context->srcW = srcW;
1757  context->srcH = srcH;
1758  context->srcRange = handle_jpeg(&srcFormat);
1759  context->srcFormat = srcFormat;
1760  context->dstW = dstW;
1761  context->dstH = dstH;
1762  context->dstRange = handle_jpeg(&dstFormat);
1763  context->dstFormat = dstFormat;
1764  context->flags = flags;
1765  context->param[0] = param[0];
1766  context->param[1] = param[1];
1768  context->srcRange,
1769  ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
1770  context->dstRange, 0, 1 << 16, 1 << 16);
1771  if (sws_init_context(context, srcFilter, dstFilter) < 0) {
1772  sws_freeContext(context);
1773  return NULL;
1774  }
1775  }
1776  return context;
1777 }
packed YUV 4:2:2, 16bpp, Cb Y0 Cr Y1
Definition: pixfmt.h:84
SwsVector * chrV
Definition: swscale.h:130
uint8_t is_supported_out
Definition: utils.c:75
int16_t ** alpPixBuf
Ring buffer for scaled horizontal alpha plane lines to be fed to the vertical scaler.
int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
Return a positive value if pix_fmt is a supported output format, 0 otherwise.
Definition: utils.c:186
static const FormatEntry format_entries[AV_PIX_FMT_NB]
Definition: utils.c:79
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:157
ptrdiff_t uv_off_px
offset (in pixels) between u and v planes
void * av_malloc(size_t size)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...
Definition: mem.c:62
static SwsVector * sws_sumVec(SwsVector *a, SwsVector *b)
Definition: utils.c:1508
av_cold void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4], int brightness, int contrast, int saturation)
#define SWS_SRC_V_CHR_DROP_MASK
Definition: swscale.h:69
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:1507
int chrSrcH
Height of source chroma planes.
#define SWS_X
Definition: swscale.h:60
static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
#define SWS_BICUBIC
Definition: swscale.h:59
uint8_t * chrMmxextFilterCode
Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:150
const char * sws_format_name(enum AVPixelFormat format)
Definition: utils.c:198
uint8_t * lumMmxextFilterCode
Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
#define B
Definition: dsputil.c:1836
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:70
SwsVector * lumV
Definition: swscale.h:128
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:67
packed RGB 1:2:1 bitstream, 4bpp, (msb)1B 2G 1R(lsb), a byte contains two pixels, the first pixel in ...
Definition: pixfmt.h:87
int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
Definition: utils.c:815
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:153
int av_get_bits_per_pixel(const AVPixFmtDescriptor *pixdesc)
Return the number of bits per pixel used by the pixel format described by pixdesc.
Definition: pixdesc.c:1480
SwsVector * sws_getGaussianVec(double variance, double quality)
Return a normalized Gaussian curve used to filter stuff quality = 3 is high quality, lower is lower quality.
Definition: utils.c:1426
void av_opt_set_defaults(void *s)
Set the values of all AVOption fields to their default values.
Definition: opt.c:504
int vChrDrop
Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user...
int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4], int fullRange, int brightness, int contrast, int saturation)
Definition: yuv2rgb.c:664
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:160
packed RGB 5:5:5, 16bpp, (msb)1A 5R 5G 5B(lsb), little-endian, most significant bit to 0 ...
Definition: pixfmt.h:118
#define SWS_BICUBLIN
Definition: swscale.h:63
static double getSplineCoeff(double a, double b, double c, double d, double dist)
Definition: utils.c:207
int dstFormatBpp
Number of bits per pixel of the destination pixel format.
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Definition: pixfmt.h:180
external API header
static int handle_jpeg(enum AVPixelFormat *format)
Definition: utils.c:833
int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
Definition: utils.c:192
8bit gray, 8bit alpha
Definition: pixfmt.h:144
packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), little-endian
Definition: pixfmt.h:121
#define SWS_SRC_V_CHR_DROP_SHIFT
Definition: swscale.h:70
const char * swscale_configuration(void)
Return the libswscale build-time configuration.
Definition: utils.c:60
#define LIBAV_CONFIGURATION
Definition: config.h:4
planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:147
packed RGB 4:4:4, 16bpp, (msb)4A 4R 4G 4B(lsb), big-endian, most significant bits to 0 ...
Definition: pixfmt.h:141
void sws_subVec(SwsVector *a, SwsVector *b)
Definition: utils.c:1578
#define CONFIG_SWSCALE_ALPHA
Definition: config.h:349
int srcRange
0 = MPG YUV range, 1 = JPG YUV range (source image).
#define SWS_PRINT_INFO
Definition: swscale.h:74
enum AVPixelFormat av_pix_fmt_swap_endianness(enum AVPixelFormat pix_fmt)
Utility function to swap the endianness of a pixel format.
Definition: pixdesc.c:1561
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:129
uint8_t log2_chroma_w
Amount to shift the luma width right to find the chroma width.
Definition: pixdesc.h:68
packed RGB 1:2:1 bitstream, 4bpp, (msb)1R 2G 1B(lsb), a byte contains two pixels, the first pixel in ...
Definition: pixfmt.h:90
Macro definitions for various function/variable attributes.
#define FFALIGN(x, a)
Definition: common.h:62
void av_freep(void *arg)
Free a memory block which has been allocated with av_malloc(z)() or av_realloc() and set the pointer ...
Definition: mem.c:198
packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), little-endian
Definition: pixfmt.h:116
int srcH
Height of source luma/alpha planes.
packed RGB 1:2:1, 8bpp, (msb)1B 2G 1R(lsb)
Definition: pixfmt.h:88
#define SWS_BILINEAR
Definition: swscale.h:58
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), little-endian ...
Definition: pixfmt.h:170
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
Definition: pixfmt.h:181
const int32_t ff_yuv2rgb_coeffs[8][4]
Definition: yuv2rgb.c:38
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
Definition: pixfmt.h:104
int chrDstVSubSample
Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination i...
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
Definition: pixdesc.h:85
uint8_t
#define av_cold
Definition: attributes.h:66
int length
number of coefficients in the vector
Definition: swscale.h:122
#define SWS_LANCZOS
Definition: swscale.h:66
8 bit with PIX_FMT_RGB32 palette
Definition: pixfmt.h:76
AVOptions.
int x86_reg
Definition: asm.h:70
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as lit...
Definition: pixfmt.h:113
int vChrFilterSize
Vertical filter size for chroma pixels.
#define b
Definition: input.c:52
int16_t ** lumPixBuf
Ring buffer for scaled horizontal luma plane lines to be fed to the vertical scaler.
packed RGB 4:4:4, 16bpp, (msb)4A 4R 4G 4B(lsb), little-endian, most significant bits to 0 ...
Definition: pixfmt.h:140
void sws_addVec(SwsVector *a, SwsVector *b)
Definition: utils.c:1569
#define emms_c()
Definition: internal.h:46
#define SWS_FULL_CHR_H_INT
Definition: swscale.h:78
packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), big-endian
Definition: pixfmt.h:115
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Definition: pixfmt.h:97
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
Definition: pixfmt.h:182
#define SWS_FAST_BILINEAR
Definition: swscale.h:57
planar GBR 4:4:4 48bpp, big-endian
Definition: pixfmt.h:165
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of PIX_FMT_YUV440P and setting color_range ...
Definition: pixfmt.h:103
static int flags
Definition: log.c:44
SwsContext * sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
Allocate and return an SwsContext.
Definition: utils.c:1315
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of PIX_FMT_YUV422P and setting color_...
Definition: pixfmt.h:78
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
Definition: pixfmt.h:185
av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter, SwsFilter *dstFilter)
Initialize the swscaler context sws_context.
Definition: utils.c:865
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:139
#define isAnyRGB(x)
external api for the swscale stuff
enum AVPixelFormat dstFormat
Destination pixel format.
#define isALPHA(x)
Definition: swscale-test.c:47
int chrSrcHSubSample
Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source imag...
static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
static SwsVector * sws_getShiftedVec(SwsVector *a, int shift)
Definition: utils.c:1543
uint64_t vRounder
const char * name
Definition: pixdesc.h:58
#define ROUNDED_DIV(a, b)
Definition: common.h:51
int32_t * vChrFilterPos
Array of vertical filter starting positions for each dst[i] for chroma planes.
int dstH
Height of destination luma/alpha planes.
planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:148
SwsFilter * sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, float lumaSharpen, float chromaSharpen, float chromaHShift, float chromaVShift, int verbose)
Definition: utils.c:1352
planar GBR 4:4:4 27bpp, big-endian
Definition: pixfmt.h:161
#define INLINE_MMX(flags)
Definition: cpu.h:59
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:156
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
Definition: pixfmt.h:167
uint16_t depth_minus1
number of bits in the component minus 1
Definition: pixdesc.h:45
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:123
void av_free(void *ptr)
Free a memory block which has been allocated with av_malloc(z)() or av_realloc(). ...
Definition: mem.c:186
uint8_t log2_chroma_h
Amount to shift the luma height right to find the chroma height.
Definition: pixdesc.h:77
int16_t ** chrVPixBuf
Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
int32_t * hChrFilterPos
Array of horizontal filter starting positions for each dst[i] for chroma planes.
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:134
#define AVERROR(e)
Definition: error.h:43
int hLumFilterSize
Horizontal filter size for luma/alpha pixels.
SwsFunc ff_getSwsFunc(SwsContext *c)
Return function pointer to fastest main scaler path function depending on architecture and available ...
Definition: swscale.c:771
#define PPC_ALTIVEC(flags)
Definition: cpu.h:26
#define SWS_MAX_REDUCE_CUTOFF
Definition: swscale.h:99
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
Definition: pixfmt.h:98
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:144
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), big-endian
Definition: pixfmt.h:173
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:152
planar YUV 4:2:0, 12bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (firs...
Definition: pixfmt.h:92
void av_log(void *avcl, int level, const char *fmt,...)
Definition: log.c:148
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:132
void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
Print with av_log() a textual representation of the vector a if log_level <= av_log_level.
Definition: utils.c:1610
#define SWS_CS_DEFAULT
Definition: swscale.h:107
int vChrBufSize
Number of vertical chroma lines allocated in the ring buffer.
#define LIBAV_LICENSE
Definition: config.h:5
av_cold void sws_rgb2rgb_init(void)
Definition: rgb2rgb.c:132
#define X86_MMX(flags)
Definition: cpu.h:31
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
Definition: pixfmt.h:174
#define FFMAX(a, b)
Definition: common.h:55
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
Definition: pixfmt.h:95
void sws_scaleVec(SwsVector *a, double scalar)
Scale all the coefficients of a by the scalar value.
Definition: utils.c:1477
int chrDstW
Width of destination chroma planes.
SwsVector * lumH
Definition: swscale.h:127
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as lit...
Definition: pixfmt.h:146
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
Definition: pixfmt.h:96
void sws_normalizeVec(SwsVector *a, double height)
Scale all the coefficients of a so that their sum equals height.
Definition: utils.c:1485
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
Definition: pixfmt.h:175
struct SwsContext * sws_getCachedContext(struct SwsContext *context, int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
Check if context can be reused, otherwise reallocate a new one.
Definition: utils.c:1725
#define LICENSE_PREFIX
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:69
int32_t * hLumFilterPos
Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
void sws_freeFilter(SwsFilter *filter)
Definition: utils.c:1645
int hChrFilterSize
Horizontal filter size for chroma pixels.
static void filter(MpegAudioContext *s, int ch, const short *samples, int incr)
Definition: mpegaudioenc.c:307
SwsVector * sws_allocVec(int length)
Allocate and return an uninitialized vector with length coefficients.
Definition: utils.c:1414
ptrdiff_t uv_off_byte
offset (in bytes) between u and v planes
as above, but U and V bytes are swapped
Definition: pixfmt.h:93
int dstRange
0 = MPG YUV range, 1 = JPG YUV range (destination image).
#define APCK_SIZE
#define FFMIN(a, b)
Definition: common.h:57
packed RGB 1:2:1, 8bpp, (msb)1R 2G 1B(lsb)
Definition: pixfmt.h:91
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of PIX_FMT_YUV420P and setting color_...
Definition: pixfmt.h:77
#define SWS_GAUSS
Definition: swscale.h:64
SwsVector * chrH
Definition: swscale.h:129
uint8_t * formatConvBuffer
#define INLINE_AMD3DNOW(flags)
Definition: cpu.h:57
int vLumBufSize
Number of vertical luma/alpha lines allocated in the ring buffer.
int16_t ** chrUPixBuf
Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
int32_t
SwsVector * sws_getIdentityVec(void)
Allocate and return a vector with just one coefficient, with value 1.0.
Definition: utils.c:1461
void sws_freeContext(SwsContext *c)
Free the swscaler context swsContext.
Definition: utils.c:1661
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
Definition: pixfmt.h:179
#define FFABS(a)
Definition: common.h:52
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), big-endian
Definition: pixfmt.h:171
packed RGB 8:8:8, 24bpp, BGRBGR...
Definition: pixfmt.h:68
packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as big...
Definition: pixfmt.h:189
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:149
enum AVPixelFormat pix_fmt
Definition: movenc.c:821
unsigned swscale_version(void)
Definition: utils.c:55
static int cpu_flags
Definition: dct-test.c:73
int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
Definition: utils.c:785
int srcColorspaceTable[4]
int dstW
Width of destination luma/alpha planes.
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:158
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as big...
Definition: pixfmt.h:145
packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), big-endian
Definition: pixfmt.h:120
Definition: vf_drawbox.c:37
int32_t * vLumFilterPos
Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
#define AV_PIX_FMT_BGR555
Definition: pixfmt.h:218
NULL
Definition: eval.c:55
packed RGB 3:3:2, 8bpp, (msb)2B 3G 3R(lsb)
Definition: pixfmt.h:86
double * coeff
pointer to the list of coefficients
Definition: swscale.h:121
#define AV_LOG_INFO
Standard information.
Definition: log.h:134
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:130
int dstColorspaceTable[4]
void(* rgb15to16)(const uint8_t *src, uint8_t *dst, int src_size)
Definition: rgb2rgb.c:51
const AVClass * av_class
info on struct for av_log
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Definition: pixfmt.h:168
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:57
void sws_freeVec(SwsVector *a)
Definition: utils.c:1636
planar GBR 4:4:4 30bpp, big-endian
Definition: pixfmt.h:163
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
Definition: pixfmt.h:183
int chrDstH
Height of destination chroma planes.
packed YUV 4:2:2, 16bpp, Y0 Cb Y1 Cr
Definition: pixfmt.h:66
static void getSubSampleFactors(int *h, int *v, enum AVPixelFormat format)
Definition: utils.c:778
#define SWS_AREA
Definition: swscale.h:62
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:71
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
Definition: pixfmt.h:184
static SwsVector * sws_diffVec(SwsVector *a, SwsVector *b)
Definition: utils.c:1525
void sws_shiftVec(SwsVector *a, int shift)
Definition: utils.c:1560
int lumMmxextFilterCodeSize
Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes...
Describe the class of an AVClass context structure.
Definition: log.h:33
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Definition: pixfmt.h:186
#define RET
Definition: utils.c:71
Y , 16bpp, big-endian.
Definition: pixfmt.h:100
int vLumFilterSize
Vertical filter size for luma/alpha pixels.
#define SWS_ACCURATE_RND
Definition: swscale.h:82
byte swapping routines
int chrMmxextFilterCodeSize
Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), big-endian
Definition: pixfmt.h:169
packed BGR 5:5:5, 16bpp, (msb)1A 5B 5G 5R(lsb), little-endian, most significant bit to 1 ...
Definition: pixfmt.h:123
int16_t * vChrFilter
Array of vertical filter coefficients for chroma planes.
#define isGray(x)
Definition: swscale-test.c:38
int av_get_cpu_flags(void)
Return the flags which specify extensions supported by the CPU.
Definition: cpu.c:47
SwsVector * sws_cloneVec(SwsVector *a)
Allocate and return a clone of the vector a, that is a vector with the same coefficients as a...
Definition: utils.c:1596
#define SWS_POINT
Definition: swscale.h:61
int16_t * hLumFilter
Array of horizontal filter coefficients for luma/alpha planes.
SwsContext * sws_alloc_context(void)
Allocate an empty SwsContext.
Definition: utils.c:853
#define AV_PIX_FMT_BGR565
Definition: pixfmt.h:217
#define SWS_SPLINE
Definition: swscale.h:67
#define ARCH_PPC
Definition: config.h:24
#define SWS_SINC
Definition: swscale.h:65
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
Definition: pixfmt.h:178
packed RGB 5:5:5, 16bpp, (msb)1A 5R 5G 5B(lsb), big-endian, most significant bit to 0 ...
Definition: pixfmt.h:117
#define SWS_BITEXACT
Definition: swscale.h:83
packed BGR 4:4:4, 16bpp, (msb)4A 4B 4G 4R(lsb), big-endian, most significant bits to 1 ...
Definition: pixfmt.h:143
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:154
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:133
int height
Definition: gxfenc.c:72
uint8_t is_supported_in
Definition: utils.c:74
void sws_convVec(SwsVector *a, SwsVector *b)
Definition: utils.c:1587
const AVClass sws_context_class
Definition: options.c:69
Y , 1bpp, 0 is black, 1 is white, in each byte pixels are ordered from the msb to the lsb...
Definition: pixfmt.h:75
#define INLINE_MMXEXT(flags)
Definition: cpu.h:60
static double sws_dcVec(SwsVector *a)
Definition: utils.c:1466
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:65
Y , 8bpp.
Definition: pixfmt.h:73
double param[2]
Input parameters for scaling algorithms that need them.
Y , 1bpp, 0 is white, 1 is black, in each byte pixels are ordered from the msb to the lsb...
Definition: pixfmt.h:74
#define FF_ALLOC_OR_GOTO(ctx, p, size, label)
Definition: internal.h:109
planar GBR 4:4:4 27bpp, little-endian
Definition: pixfmt.h:162
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as big...
Definition: pixfmt.h:112
enum AVPixelFormat srcFormat
Source pixel format.
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:131
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of PIX_FMT_YUV444P and setting color_...
Definition: pixfmt.h:79
packed RGB 3:3:2, 8bpp, (msb)2R 3G 3B(lsb)
Definition: pixfmt.h:89
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
Definition: pixfmt.h:72
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
Definition: pixfmt.h:176
#define SWS_PARAM_DEFAULT
Definition: swscale.h:72
#define SWS_FULL_CHR_H_INP
Definition: swscale.h:80
SwsFunc swscale
Note that src, dst, srcStride, dstStride will be copied in the sws_scale() wrapper so they can be fre...
#define MAX_FILTER_SIZE
packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as lit...
Definition: pixfmt.h:188
int srcFormatBpp
Number of bits per pixel of the source pixel format.
Y , 16bpp, little-endian.
Definition: pixfmt.h:101
uint8_t is_supported_endianness
Definition: utils.c:76
int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
Return a positive value if pix_fmt is a supported input format, 0 otherwise.
Definition: utils.c:180
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
Definition: pixfmt.h:177
static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos, int *outFilterSize, int xInc, int srcW, int dstW, int filterAlign, int one, int flags, int cpu_flags, SwsVector *srcFilter, SwsVector *dstFilter, double param[2], int is_horizontal)
Definition: utils.c:220
packed BGR 5:5:5, 16bpp, (msb)1A 5B 5G 5R(lsb), big-endian, most significant bit to 1 ...
Definition: pixfmt.h:122
number of pixel formats, DO NOT USE THIS if you want to link with shared libav* because the number of...
Definition: pixfmt.h:193
int16_t * vLumFilter
Array of vertical filter coefficients for luma/alpha planes.
SwsVector * sws_getConstVec(double c, int length)
Allocate and return a vector with length coefficients, all with the same value c. ...
Definition: utils.c:1447
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
Definition: pixfmt.h:102
planar GBR 4:4:4 48bpp, little-endian
Definition: pixfmt.h:166
int16_t * hChrFilter
Array of horizontal filter coefficients for chroma planes.
#define LOCAL_MANGLE(a)
Definition: asm.h:107
packed BGR 4:4:4, 16bpp, (msb)4A 4B 4G 4R(lsb), little-endian, most significant bits to 1 ...
Definition: pixfmt.h:142
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:1449
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), little-endian
Definition: pixfmt.h:172
int chrDstHSubSample
Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination...
int chrSrcW
Width of source chroma planes.
void ff_get_unscaled_swscale(SwsContext *c)
Set c->swscale to an unscaled converter if one exists for the specific source and destination formats...
int srcW
Width of source luma/alpha planes.
packed YUV 4:1:1, 12bpp, Cb Y0 Y1 Cr Y2 Y3
Definition: pixfmt.h:85
float min
int chrSrcVSubSample
Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image...
int flags
Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
AVPixelFormat
Pixel format.
Definition: pixfmt.h:63
void * av_mallocz(size_t size)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...
Definition: mem.c:205
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:155
for(j=16;j >0;--j)
#define FF_ALLOCZ_OR_GOTO(ctx, p, size, label)
Definition: internal.h:118
planar GBR 4:4:4 30bpp, little-endian
Definition: pixfmt.h:164
static SwsVector * sws_getConvVec(SwsVector *a, SwsVector *b)
Definition: utils.c:1490
#define LIBSWSCALE_VERSION_INT
Definition: version.h:33
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:151
const char * swscale_license(void)
Return the libswscale license.
Definition: utils.c:65